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a b s t r a c t

Mathematical models of infectious diseases can provide important insight into our under-

standing of epidemiological processes, the course of infection within a host, the transmis-

sion dynamics in a host population, and formulation or implementation of infection control

programs. We present a framework for modeling the dynamics of infectious diseases in dis-

crete time, based on the theory of matrix population models. The modeling framework

presented here can be used to model any infectious disease of humans or wildlife with dis-

crete disease states, irrespective of the number of disease states. The model allows rigorous

estimation of important quantities, including the basic reproduction ratio of the disease

(R0) and growth rate of the population (�), and permits quantification of the sensitivity of R0

and � to model parameters. The model is amenable to rigorous experimental design, and

when appropriate data are available, model parameters can be estimated using statistically

robust multi-state capture-mark-recapture models. Methods for incorporating the effects

of population density, prevalence of the disease, and stochastic forces on model behavior
Multi-state capture-mark-recapture

(

W

also are presented.

© 2006 Elsevier B.V. All rights reserved.
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. Introduction

nfectious diseases have been one of the most influential
auses of morbidity and mortality throughout the history of
ankind. An estimated 25 million Europeans died of bubonic

lague in the 14th century, and about 1.5 million Aztecs suc-
umbed to smallpox in 1520 (Anderson and May, 1991; Ewald,

994). Infectious diseases such as plague, smallpox, measles,
nd tuberculosis have had a devastating effect on human pop-
lations in the past, and some of these diseases continue to
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E-mail addresses: olimadan@wec.ufl.edu, olim@ufl.edu (M.K. Oli).

304-3800/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
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be a major cause of morbidity and mortality in developing
countries (Anderson, 1994). The AIDS epidemic, SARS, West
Nile Virus encephalitis, and other emerging infectious dis-
eases suggest that diseases remain an important public health
concern even in developed countries (Low and McGeer, 2003;
Enserink, 2004; Gould and Fikrig, 2004; Watson and Gerber,
An important development in the study of infectious dis-
eases has been the application of mathematical models to
understand the interplay between various factors that deter-
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mine the epidemiological processes, course of infection within
a host, and transmission dynamics in a host population
(Anderson and May, 1991; Anderson, 1994). Mathematical
models of infectious diseases range from the early models
of Ross (1911) and Kermack and McKendrick (1927), to more
recent models of HIV-AIDS (Anderson and May, 1988, 1991;
Anderson, 1991a,b, 1994; Levin et al., 2001; May, 2004), cholera
(Pascual et al., 2002), and measles (Bolker and Grenfell, 1993;
Grenfell et al., 2002). Mathematical models have been used
to formulate and test hypotheses of disease transmission; to
explore transmission dynamics of pathogens; to investigate
the evolution of resistance to antibiotics and the evolutionary
cost of resistance; and to design programs for disease con-
trol (Anderson and May, 1991; Anderson, 1994; Wilson et al.,
1994; Barlow and Kean, 1998; Grossman, 2000; Kristinsson,
2001; Levin, 2001; Smith and Cheeseman, 2002; Scherer and
McLean, 2002; Spear et al., 2002; Woolhouse, 2002; May, 2004;
van Boven and Weissing, 2004).

In the past, wildlife diseases received attention only if they
posed zoonotic threats or impacted livestock. However, the
loss and fragmentation of wildlife habitat has led to more
direct contact between humans and wildlife. Because many
wildlife species serve as reservoirs, or intermediate or sec-
ondary hosts for diseases of humans and domestic livestock
(Low and McGeer, 2003; Enserink, 2004), an understanding of
diseases in wildlife populations has become important from a
public health perspective. From a conservation perspective,
habitat fragmentation coupled with small population sizes
may make wildlife populations vulnerable to extinction from
diseases (Saunders and Hobbs, 1991; Jacobson, 1994; Hudson
et al., 2001). For example, recent declines in populations
of Ethiopian wolves are attributed to rabies transmitted by
domestic dogs, canine distemper virus (CDV) from other carni-
vore species is threatening populations of black-footed ferrets,
and measles from humans poses a serious threat to moun-
tain gorillas (Cleaveland et al., 2001; Dobson and Foufopoulos,
2001). As wildlife populations diminish and the interest in
their conservation increases, it becomes essential to investi-
gate the importance of the impact of diseases at the popula-
tion level (Daszak et al., 2000; Dobson and Foufopoulos, 2001).
Thus, studies of wildlife diseases are important from public
health, economic as well as conservation perspectives.

Most existing disease models are continuous time (differ-
ential or partial differential equation) models. Discrete time
epidemiological models have received little attention (see van
Boven and Weissing, 2004 for an exception) due, at least in
part, to the lack of a unified framework. Within the past two
decades, substantial progress has been made in the theory of
matrix population models (Caswell, 2001), and these powerful
tools can be used to model the dynamics of infectious diseases
with discrete disease states. When appropriate data are avail-
able, parameters for matrix-based disease models can be esti-
mated using statistically sound multi-state mark-recapture
methods (Williams et al., 2002). Finally, disease models based
on the theory of matrix population models not only allow
asymptotic analyses (e.g., estimation of net reproduction rate

of the disease and growth rate of the population, sensitivity
analyses), but also provide a flexible framework for modeling
stochastic influences and frequency- or density-dependence
of the disease and population dynamics.
1 9 8 ( 2 0 0 6 ) 183–194

In this paper, we provide a unified framework for modeling
disease dynamics in discrete time within the framework of
matrix population models (Caswell, 2001; Oli, 2003; Yearsley,
2004). First, we outline methods for determining model struc-
ture for infectious diseases with any number of disease states,
and present methods for asymptotic analyses of the model.
We then describe methods for estimating model parameters
using rigorous statistical techniques. Transmission dynam-
ics of diseases can be influenced by population density of
the host, prevalence of the disease, and by stochastic influ-
ences. Thus, a framework for modeling the effects of disease
prevalence, population density, and stochastic forces also are
presented.

2. Model formulation

We first consider the classical SIR disease model (e.g.,
Anderson and May, 1991), where the host population is com-
posed of susceptible (S), infective (I), or recovered (R) individ-
uals such that the total population size at any given time N(t)
is given by

N(t) = S(t) + I(t) + R(t). (1)

We assume that the population is sampled at discrete time
t = 1, 2, 3, . . . ,T, and the disease states are accurately identi-
fied. Each individual in the population is assigned to one of
the disease states, namely, S, I or R. Susceptible individuals
survive with the probability ps and become infective with the
probability ˇ (0 < ˇ ≤ 1) per unit time. Infective individuals sur-
vive with the probability pi, and recover with the probability
� (0 < � ≤ 1) per unit time. Recovered individuals remain at the
same disease state throughout their lives, and survive with
the probability pr per unit time. Finally, let Fs, Fi, and Fr be the
fertility rates of susceptible, infective and recovered individu-
als, respectively, and assume that all juveniles (i.e., new born
individuals) are susceptible. The dynamics of the population
can be graphically portrayed by a life cycle graph (Fig. 1), from
which a population projection matrix can be derived (Caswell,
2001):

A =

⎛
⎜⎝

Fs + (1 − ˇ)ps Fi Fr

psˇ (1 − �)pi 0

0 �pi pr

⎞
⎟⎠ . (2)

The dynamics of the model is determined by the recurrence
equations:

n(t + 1) = An(t), (3)

where the population state vector n(t) gives the number of
susceptible, infected and recovered individuals at time t:

n(t) = ( S(t) I(t) R(t) )
T

. (4)
We note that the parameter ˇ differs from the transmis-
sion rate parameter commonly used in continuous time mod-
els (which is difficult to estimate; see McCallum et al., 2001;
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Fig. 1 – Life cycle graph for a SIR-type disease, and a
corresponding projection matrix. Disease states are:
S = susceptible, I = infective, and R = recovered. Model
parameters are: Fk = fertility rate of individuals in disease
state k, pk = survival probability of individuals in disease
state k (where k = S, I or R), ˇ = infection rate (probability that
a susceptible individual becomes infective between time t
a
i

B
b
t
A
s
c
t
m

a
a
c
f
e
i
t
i
j
a

e
m
p
t

2
b

I
u

Fig. 2 – Life cycle graph for a SEIR-type disease. A
corresponding projection matrix A also is given. Disease
states are: S = susceptible, E = exposed, I = infective, and,
R = recovered. Model parameters are: Fk = fertility rate of
individuals in disease state k, pk = survival rate of
individuals in disease state k (where k = S, E, I or R),
ˇ = exposure rate (probability that a susceptible individual
becomes exposed to infection between time t and t + 1),
ε = infection rate (probability that an exposed individual
becomes infective between time t and t + 1), and � = recovery
nd t + 1), and � = recovery rate (probability that an infective

ndividual recovers between time t and t + 1).

egon et al., 2002) in that ˇ is clearly defined as the proba-
ility that a susceptible individual becomes infective between
ime t and t + 1 and can be easily estimated as described below.
lso, density- or frequency-dependence in disease transmis-
ion in not considered in this formulation (but see below);
onsequently, model structure in Eq. (3) differs slightly from
he equivalent continuous time model based on the law of

ass action (McCallum et al., 2001; Begon et al., 2002).
Within the framework provided above, life-cycle graphs

nd corresponding projection matrices can be derived for
ny disease with discrete disease states. Examples of life-
ycle graphs and corresponding projection matrices are given
or the classical SEIR (susceptible, exposed, infected, recov-
red; Fig. 2) model, SI1RI2 (susceptible, infected1, recovered,
nfected2; Fig. 3) model, and for a modified SIR model with mul-
iple infection and recovery states (SI1R1R2R3I2; Fig. 4) for hor-
zontally transmitted diseases. The life-cycle graphs (and pro-
ection matrices) can be easily modified to model diseases that
re transmitted vertically or both vertically and horizontally.

In this paper we have used the SIR model (Fig. 1) as an
xample for detailed analyses. However, once the projection
atrix appropriate for a particular disease is derived, the same

rinciples of analysis apply to all disease models regardless of
he number of disease states or model structure.

.1. Estimation of population growth rate (�) and

asic reproduction ratio (R0)

f the model parameters remain constant, the population will
ltimately converge to the stable state distribution, and each
rate (probability that an infective individual recovers
between time t and t + 1).

of the disease states as well as the entire population will grow
with a projected population growth rate, � (Fig. 5A) The pro-
jected population growth rate � is estimated as the dominant
eigenvalue of the projection matrix A, and can be obtained
numerically (Caswell, 2001). The long-term behavior of the
model is determined by � such that each disease state as well
as the entire population grows exponentially when � > 1, and
declines exponentially when � < 1. Transient dynamics of the
model depend on initial conditions and relative magnitudes
of the eigenvalues of A, and are described in detail by Caswell
(2001). The right and left eigenvectors corresponding to the
dominant eigenvalue quantify the stable state distribution,
and state-specific reproductive values, respectively.

The basic reproduction ratio (R0) is an important statistic in
models of infectious diseases, and has been frequently used
for establishing disease control strategies, vaccination pro-
grams, and in evolutionary studies (Anderson and May, 1991;
Keeling, 1997; van Boven and Weissing, 2004). In disease mod-
els, R0 is defined as the expected number of new infections in a
population of susceptible hosts by the introduction of a single
infective individual (Anderson and May, 1991; Hethcote, 2000;
Heesterbeek, 2002). In practice, however, R0 has been esti-
mated using various methods. For continuous time models,
Dieckmann and Heesterbeek (2000) and Heesterbeek (2002)
have shown that R0 is best estimated as the spectral radius

of the next generation operator. Here, we present an equiva-
lent method for estimating R0 for discrete time models such
as that represented by the SIR model (Eq. (2)). The concept of
basic reproduction ratio in models of disease dynamics is sim-
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Fig. 3 – Life cycle graph for a SIRI-type disease with two
infective states. A corresponding projection matrix A also is
given. Disease states are: S = susceptible, I1 = primary
infective (i.e., susceptible individuals that become
infective), R = recovered, and I2 = secondary infective (i.e.,
due to reinfection of recovered individuals). Model
parameters are: Fk = fertility rate of individuals in disease
state k, pk = survival rate of individuals in disease state k
(where k = S, I1, R, or I2), ˇ1 = primary infection rate
(probability that a susceptible individual becomes infective
between time t and t + 1), �1 = primary recovery rate
(probability that an infective individual recovers from the
primary infection between time t and t + 1), ˇ2 = secondary
infection rate (probability that a recovered individual
succumbs to secondary infection between time t and t + 1),
� = secondary recovery rate (probability that an infective

0

2

individual recovers from the secondary infection between
time t and t + 1).

ilar to that of net reproductive rate in stage-structured models
of population dynamics. In population ecology, net reproduc-
tive rate (R0) is defined as the average number of offspring
produced by a newborn individual during its lifetime.

We begin with a brief review of relevant concepts in matrix
population theory as they apply to stage-structured popu-
lations (Cushing and Yicang, 1994; Caswell, 2001). In matrix
models of stage-structured populations, stage-specific tran-
sition probabilities and reproductive parameters are summa-
rized in a population projection matrix A, which can be written
in terms of the transition matrix T (where the element tij is
the probability that an individual in stage j at the time t is
alive and in stage state i at time t + 1), and the fertility matrix F
which describes the reproduction (where the element fij is the
expected number of i-type offspring of an individual in stage
j):

A = T + F. (5)

The fundamental matrix N is defined as
N = (I − T)−1, (6)

where I is the identity matrix. The fundamental matrix pro-
vides information about the expected number of time steps
1 9 8 ( 2 0 0 6 ) 183–194

spent in each state and expected time to death or absorption.
Finally, the matrix R is given by

R = FN. (7)

The entries rij of matrix R quantify the expected lifetime pro-
duction of offspring of type i by an individual starting life in
stage j (Cushing and Yicang, 1994; Caswell, 2001). The domi-
nant eigenvalue of matrix R is the net reproductive rate R0 as
defined in population ecology.

Much of this theory also applies to models of disease
dynamics, except that the reproductive matrix F is defined
differently. This is because of the differences in the defi-
nition of R0 in population and disease models. In disease
models, “reproduction” of a disease quantifies the number of
new infections, which may not include neonates if disease
transmission is strictly horizontal. When we speak of R0 in
case of a disease, it is the number of infections that a single
“infective” individual produces in a population of susceptible
hosts during the infectious period. If transmission of a disease
is strictly horizontal, all newborn babies are infection-free,
regardless of their parentage. On the other hand, if transmis-
sion is strictly vertical, only offspring of infective individuals
are born as infectives. If transmission occurs horizontally as
well as vertically, newly infected individuals may comprise of
neonates and adults. For the SIR model with strictly horizontal
transmission of the disease, only one type of infection is pro-
duced. Thus, only f22 entry of the reproductive matrix F will
be nonzero:

fij =
{

ˇps if i = j = 2,

0, otherwise.
(8)

Once the “reproductive” matrix F is constructed, the fun-
damental matrix N is derived as above. Then, R = FN. We refer
to R as the next generation matrix of the disease. The basic
reproduction ratio, R0, of the disease is estimated as the dom-
inant eigenvalue of the next generation matrix R. Once the
next generation matrix R is constructed, R0 can be estimated
numerically for a disease with any number of disease states
or model structure. Although numerical estimation of R0 is
preferable for complex models, analytical expressions for the
computation of R0 can be derived for simple models, such as
the SIR model (Appendix I).

The transmission dynamics of the disease is determined
by the value of R0. Persistence or spread of the infection
occurs if R0 ≥ 1; the disease is expected to die out if R0 < 1.
For this reason, R0 is also called the threshold quantity in
that it determines whether a disease will persist in the pop-
ulation (Dieckmann and Heesterbeek, 2000; Hethcote, 2000;
Heesterbeek, 2002).

2.2. Sensitivity and elasticity analyses

It is of interest to know how � or R0 respond to perturbations
in model parameters. Likely responses of � or R to changes

in model parameters can be investigated using the sensitiv-
ity analysis (Caswell, 2001). Given that the growth rate � and
the basic reproduction ratio R0 are estimated as the domi-
nant eigenvalue of the matrix A and R, respectively, the theory
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Fig. 4 – Life cycle graph for a SIR-type disease with multiple infective and recovery states. A corresponding projection
matrix A also is given. Disease states are: S = susceptible, I1 = primary infective (i.e., susceptible individuals that become
infective), R1, R2, R3 = early, mid, and late recovery states, respectively, and I2 = secondary infective (i.e., due to reinfection of
recovered individuals). Model parameters are: Fk = fertility rate of individuals in disease state k, pk = survival rate of
individuals in disease state k (where k = S, I1, R1, R2, R3 or I2), ˇ1 = primary infection rate (probability that a susceptible
individual becomes infective between time t and t + 1), ˇ2 = secondary infection rate (probability that an individual in disease
state R3 becomes infective between time t and t + 1), �1 = primary recovery rate (probability that an infective individual in
disease state I1 recovers from the primary infection and is in disease state R1 between time t and t + 1), ˇ2 = secondary
infection rate (probability that a recovered individual in disease state R3 succumbs to secondary infection between time t
a R1 at
� t is i
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nd t + 1), �1 = probability that an individual in disease state

2 = probability that an individual in disease state R2 at time

f sensitivity analysis developed for the matrix population
odels (see Caswell, 2001 for details) can be extended to the

isease models. The sensitivity of the growth rate � to changes
n aij (i.e., i, j-th entry of A) is given by the partial derivative of
with respect to aij:

∂�

∂aij
= viwj

〈w, v〉 , (9)

here w and v are the right and left eigenvectors, respectively,
orresponding to the dominant eigenvalue of the projection
atrix A, and the denominator is the scalar product of w and v.
any entries of A, however, are functions of other lower-level

arameters, such as transmission rate (ˇ) and recovery rate
�). One might apply the chain rule to estimate the sensitivity
f � to changes in any model parameter X as

∂�

∂X
=

∑
i,j

∂�

∂aij

∂aij

∂X
. (10)

The concept of elasticity (proportional sensitivity) has

eceived substantial attention in population ecology and con-
ervation biology (Caswell, 2001; de Kroon et al., 1986) but not
n epidemiological models. The elasticity of � to changes in

ij quantifies responses of � to proportional changes in i, j-th
time t is in disease state R2 at time t + 1, and
n disease state R3 at time t + 1.

entry of the matrix (de Kroon et al., 1986; Caswell, 2001):

eij = ∂ log �

∂ log aij
= aij

�

∂�

∂aij
. (11)

Finally, elasticity of � to changes in a lower-level parameter X
is given by

e(X) = X

�

∂�

∂X
= X

�

∑
i,j

∂�

∂aij

∂aij

∂X
. (12)

The sensitivity and elasticity of R0 to changes in model
parameters are estimated similarly, except that we now seek
to quantify the sensitivity of R0 to changes in rij (i.e., i, j-th entry
of the next generation matrix R) or a lower-level parameter X:

∂R0

∂rij
= viwj

〈w, v〉 , (13)

∂R0 =
∑ ∂R0 ∂rij

, (14)

∂X

i,j
∂rij ∂X

eij = rij

R0

∂R0

∂rij
(15)
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Fig. 5 – (A) Density-independent dynamics of the discrete time SIR model. Parameter values were: ps = pi = pr = 0.8, ˇ = 0.3,
and � = 0.3. Fecundity rate (m) was assumed to be 1.0 for all disease states. Initial population sizes were 100, 10, and 0 for
susceptible, infective, and recovered states, respectively. (B–D) Depict the dynamics of SIR model with density-dependent ˇ

and fecundity rates. Density of infective individuals was assumed to influence ˇ such that ˇ(N) = 1 − exp(−kI), where k
quantifies the strength of density-dependence and I is the density of infective individuals. Ricker function was used to
incorporate density-dependence in fecundity rates, which was assumed to be influenced by total population size
(N(t) = S(t) + I(t) + R(t)): m(N) = m × exp(−cN), where c quantifies the strength of density-dependence. Values of

(C) k
density-dependence parameters were (B) k = 0.001, c = 0.005,

and

e(X) = X

R0

∑
i,j

∂R0

∂rij

∂rij

∂X
, (16)

where w and v are the right and left eigenvectors, respectively,
corresponding to the dominant eigenvalue R0 of the next gen-
eration matrix R.

Sensitivities and elasticities can be estimated numerically
for a disease with any number of disease states or model
structure. Although numerical methods should be preferred
for estimating R0 for complex models, analytical expressions
can be derived for simple models (Appendix II).

3. Parameter estimation

Reliability of the results of a modeling process depends on the
robustness of the model parameters. Because disease models
are frequently used in the formulation or implementation of
disease control programs with far reaching public health or
conservation consequences, it is imperative that parameters

of disease models are estimated using rigorous and statisti-
cally sound techniques. In this section, we outline methods
for estimating parameters for the discrete time model out-
lined above.
= 0.01, c = 0.05, and (D) k = 0.01, c = 0.001.

We envisage a study in which a population is sampled at
discrete time t = 1, 2, 3, . . . ,T. During each sampling occasion,
unmarked individuals are uniquely marked, disease states
accurately identified, and each individual in the population is
assigned to one of the disease states, k (k = 1, 2, . . . ,K). Result-
ing data from this type of capture-mark-recapture (CMR) study
include capture history, disease state of each individual in
the population during each sampling occasion, and individ-
ual attributes of the host (e.g., mass, sex, reproductive status,
clinical signs of the disease, morphometric measurements)
and of the pathogen (e.g., strains, virulence) that are deemed
important. Environmental covariates (e.g., temperature, rain-
fall, population density) that are likely to influence transmis-
sion dynamics of the disease may also be recorded. Multi-state
CMR models can be applied to these data to obtain maxi-
mum likelihood estimates of state-specific survival and dis-
ease state transition probabilities. Multi-state CMR models
are described elsewhere in detail in the context of estimating
demographic parameters (Nichols and Kendall, 1995; Fujiwara
and Caswell, 2002; Williams et al., 2002). Here, we provide a
brief overview of this technique as it relates to estimating dis-
ease model parameters using the SIR model as an example.
For the SIR model, the capture and disease transition his-
tory may consist of N and I to indicate the disease states (not
infected and infected, respectively) when an individual was
captured, and 0 if it was not captured during a sampling occa-
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ion. Thus, capture and disease transition history for each
ndividual will consist of a string of I, N, and 0 (and appro-
riate covariates). Let ϕNI

t be the combined probability that a
usceptible individual alive at sample t is alive and is infective
t sample t + 1. Assuming that survival between two sampling
ccasions depends only on the disease state at sample t, ϕNI

t

an be written as (Williams et al., 2002):

NI
t = psˇ, (17)

here ˇ is the probability that a susceptible individual at sam-
le t is infective at sample t + 1 given that it is alive at sample
+ 1, and ps is the probability that a susceptible individual alive
t sample t survives and remains in the population at sample
+ 1. Likewise, define ϕIN

t as the combined probability that an
nfective individual alive at sample t is alive and is recovered
t sample t + 1. With the assumption stated previously, ϕIN

t can
e written as

IN
t = pi�, (18)

here ϕIN
t is the combined probability that an infective individ-

al alive at sample t is alive and in recovered state at sample
+ 1, pi the survival probability of an infective individual and
is the probability that an infective individual recovers dur-

ng the interval t and t + 1 given that it is alive at time t + 1.
aximum likelihood estimates of these parameters (and of

tate-specific capture probabilities) can be obtained using soft-
are packages such as MARK (White and Burnham, 1999) or
SSURVIV (Hines, 1994).

The survival and disease state transition probabilities
an differ between sexes or vary over time or space. These
ay also be influenced by other individual or environmental

ovariates. A particularly useful feature of estimating model
arameters within the multi-state CMR framework is that it
llows modeling parameters of interest as functions of indi-
idual or environmental covariates, and permits an objective
valuation of the effect of individual or environmental covari-
tes using either a likelihood ratio test (LRT) or an informa-
ion theoretical approach (Williams et al., 2002). For example,

parameter (e.g., ps) can be modeled as function of one or
ore covariates (xi) that are hypothesized to influence the

arameter of interest. The parameter ps may be modeled as a
unction of environmental covariates using a logit-link func-
ion (Williams et al., 2002):

ˆ s =
exp

(
ˆ̨ 0 +

∑
j
ˆ̨ jxji

)

1 + exp
(

ˆ̨ 0 +
∑

j
ˆ̨ jxji

) , (19)

here ˛’s are regression coefficients and are estimated directly
rom maximum likelihood. Likewise, individual covariates can
e modeled directly using logit (or other appropriate) link
unctions (Nichols and Kendall, 1995; Fujiwara and Caswell,
002; Williams et al., 2002). Akaike‘s information criterion
AIC) or estimates of slope parameters can be used to select
odels or test hypotheses about the influence of environmen-
al or individual covariates on model parameters (Burnham
nd Anderson, 2002). Programs MARK and MSSURVIV provide
flexible framework for estimation and modeling of param-
8 ( 2 0 0 6 ) 183–194 189

eters for multi-state CMR models, and for hypothesis testing
and model selection (Hines, 1994; White and Burnham, 1999).
Faustino et al. (2004) is a good example of the way multi-state
mark-recapture approach can be used to estimate disease
transition probabilities in a natural population.

State-specific fertility rates, Fk (sensu Caswell, 2001), can be
estimated as Fk = pkmk, where pk and mk are the survival prob-
ability and fecundity, respectively, of individuals in disease
state k. If reproductive data are collected using pre-breeding
censuses and if separate estimates of survival of young are
available, pk should be replaced by survival of juveniles pro-
duced by individuals in state k (Caswell, 2001).

4. Model modification

4.1. Density- and frequency-dependence

Dynamics of many diseases are heavily influenced by density
of hosts and prevalence of the disease because densities of
susceptible or infective hosts can influence state-specific sur-
vival and transition probabilities, and/or reproductive rates
(Hochachka and Dhondt, 2000; Begon et al., 2002). In many
situations, the probability of infection increases as the den-
sity of infective hosts or prevalence of the infection increases
(Wilson et al., 2002; Cotter et al., 2004). Thus, it is essential to
consider the influence of density- and frequency-dependent
processes on disease transmission dynamics.

The effect of population density can be incorporated into
the model by letting one or more model parameters to be func-
tions of population density such that (Caswell, 2001):

n(t + 1) = An(t), (20)

where the subscript n indicates that one or more entries (or
components thereof) of the projection matrix depend on the
population density, which may be the total density of the pop-
ulation or the density of one or more of the disease states.
The relationship between overall or state-specific population
density and a model parameter can take many forms, but it
must satisfy the constraint that transition from any disease
state to all other states should be bounded by 0 and 1. One
can use existing (e.g., McCallum et al., 2001) or empirically
derived functions to model the probability of disease trans-
mission (and/or recovery if appropriate) as a function of overall
or state-specific population density. Survival and reproductive
rates may be modeled as function of total or state-specific
population density using the logistic, Beverton–Holt, Ricker
or empirically derived functions (Caswell, 2001). Likewise,
frequency- or prevalence-dependence in the disease trans-
mission and/or recovery parameters may be incorporated into
the model by letting ˇ and/or � to be functions of density of
infective individuals relative to the total population size (i.e.,
I/N).

It is well known that density-dependent models of pop-
ulation dynamics exhibit a variety of non-linear dynamics

(May, 1974; Caswell, 2001). Likewise, dynamics of density- or
frequency-dependent models are essentially non-linear, and
may exhibit a variety of behaviors (Fig. 5B–D). Depending on
the functional form of density-dependence and initial param-
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eter values, the disease can die out in the long run, invade
the population and persist indefinitely, or the population may
ultimately recover from the infection. It is advisable to test for
the presence of frequency- or density-dependence in param-
eter(s) of interest. This can be easily achieved by modeling,
for example, ˇ and � as functions of current or past den-
sity of individuals in a given state, total population size, or
I/N as described above. If density- or frequency-dependence
is detected, an appropriate functional form of such relation-
ship should be determined, preferably empirically. Behaviors
of some continuous time frequency- or density-dependent
disease models have been examined by Tapaswi et al. (1995),
Thrall et al. (1995), Gao and Hethcote (1992), Allen et al. (2003),
Chattopadhyay et al. (2003), and Greenhalgh et al. (2004).

4.2. Stochasticity

Unpredictable variation in the environment is a rule rather
than an exception in the natural world. Such environmen-
tal changes can influence characteristics of the host as well
as the pathogen, and therefore, the dynamics of the dis-
ease. Studies of childhood diseases indicate that stochasticity
can profoundly influence disease epidemiology at the pop-
ulation level. Consequently, it is often necessary to incor-
porate the effect of stochastic forces into disease models
(Lloyd, 2001; Keeling et al., 2001; Keeling and Grenfell, 2002;
Keeling and Rohani, 2002). Recent examples of continuous-
time stochastic models of disease dynamics include Dexter
(2003), McCormack and Allen (2005), and Tornatore et al. (2005).
Here, we present methods for incorporating effects of envi-
ronmental stochasticity into the matrix-based epidemiologic
models (Tuljapurkar, 1990; Caswell, 2001).

The main components of stochastic model formulation
include a model of environmental states, a function to asso-
ciate a matrix to each of the environmental states, and the
sequence of population vectors n(t) that result from apply-
ing the matrices to initial population vector n(0) (Caswell,
2001). The three commonly used models to describe stochas-
tic environments are independent and identically distributed
sequences depicting the environment, discrete state Markov
chains assuming a finite number of states, or the environ-
mental state as an autocorrelated continuous state variable
(autoregressive moving average models). Once the model is
chosen, the model of the environment is then linked to the
vital rates by selecting a projection matrix (or entries of
the matrix) associated with a particular environmental state.
Linking vital rate and the environment is followed by projec-
tion of the initial population vector n(0) as (Caswell, 2001):

n(t + 1) = AtAt−1, . . . , A0n(0). (21)

Many aspects of stochastic models can be studied using
simulations, but analytical approximations may also be used
(Tuljapurkar, 1990; Caswell, 2001). For example, to estimate the
stochastic population growth rate, one may assume a stochas-
tic sequence generated by a stationary stochastic process and

select At from an ergodic matrix set. When t = 0, the initial
population vector n(0) = n0, with the population size at time t
given by (Tuljapurkar, 1990; Caswell, 2001):

N(t) = ||At−1At−2, . . . , A0n0||. (22)
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The stochastic growth rate is then approximated as

log �s = lim
t→∞

1
t

log N(t) = lim
t→∞

1
t

log ||At−1, . . . , A0n0||. (23)

The analytical solution, though feasible for small matrices,
is an impractical task for diseases with may disease states, and
simulations of the average growth rate over a long time pro-
vide the maximum likelihood estimate of �s (Caswell, 2001);
stochastic net reproductive ratio R0 can be estimated similarly.
The sensitivity and elasticity of the stochastic growth rate and
net reproductive ratio to model parameters can be estimated
via stochastic simulations (Caswell, 2001).

5. Discussion

Effective management of infectious diseases necessitates an
understanding of factors or processes that determine the
course of infection within a host and transmission dynamics
of the disease in a host population. Although controlled labo-
ratory infection studies provide critical information regarding
infectious disease pathogenesis, such studies by themselves
are not sufficient to understand or predict the transmission
dynamics of a disease in a host population. To this end, math-
ematical models have played a pivotal role (Anderson and May,
1991; Riley et al., 2003; Rohani et al., 2003). For example, mod-
els of AIDS (Anderson and Garnett, 2000; Coutinho et al., 2001;
Levin et al., 2001), SARS (Enserink, 2004; Weinstein, 2004), and
measles (Bolker and Grenfell, 1993; Keeling, 1997; Grenfell et
al., 2002; Keeling and Grenfell, 2002) have provided valuable
insights regarding the processes governing disease dynam-
ics, and have contributed substantially to the formulation and
implementation of disease control programs.

Although infectious diseases of humans and domestic live-
stock have been the focus of epidemiological modeling in the
past, infectious diseases of wildlife have recently received
much attention (Cleaveland et al., 2001; Grenfell et al., 2001;
Swinton et al., 2001). This is because many wildlife popula-
tions serve as reservoir or secondary hosts for many infec-
tious diseases of humans and domestic animals (De Leo et al.,
2002; Low and McGeer, 2003; Enserink, 2004), and also because
infectious diseases have been found to be responsible for the
decline or demise of some wildlife populations (Cleaveland et
al., 2001; De Leo et al., 2002). In addition to the conservation
implications of wildlife disease research, the economic and
public health ramifications of transmission of the disease from
this interface makes the understanding and management of
wildlife diseases critical. Thus, a better integration of empiri-
cal data, parameter estimation and epidemiological models is
of paramount importance.

In this paper, we have presented a framework for model-
ing the dynamics of infectious diseases in discrete time. The
framework of the model is based on the well-founded theory
of matrix population models (Caswell, 2001), and is appropri-
ate for modeling infectious diseases of humans, wildlife or
domestic livestock. Our model has several desirable proper-

ties. First, this model can be applied to any disease, regard-
less of the number of diseases states. Second, the model is
amenable to rigorous parameterization within the framework
of multi-state capture-mark-recapture (CMR) modeling. Third,
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ur model allows rigorous estimation of important quanti-
ies such as the net reproductive ratio (R0) of the disease and
rowth rate of the population (�). Fourth, our model allows
uantification of the sensitivity and elasticity of R0 and �

o changes in model parameters using standard techniques.
ifth, our model provides a flexible framework for incorpo-
ating the density- or frequency-dependence and stochastic
nfluences into the model. Finally, analysis of this model is
traightforward, and does not require advanced mathemati-
al training. We believe that the aforementioned advantages
f our model will help integrate theoretical and empirical stud-

es of infectious diseases, and in so doing, will contribute to
he understanding of factors and processes influencing the
isease dynamics.

One of the most difficult challenges in modeling wildlife
iseases is the estimation of model parameters from field data

Begon et al., 1998). Most existing models of wildlife diseases
ave been parameterized inconsistently, frequently with the
est guess estimates of parameter values. Many studies of
ildlife populations utilize mark-recapture methodologies,

nd such studies can provide data that are amenable to multi-
tate capture-mark-recapture (CMR) models. Multi-state CMR
odels allow rigorous estimation of many of parameters

equired by the disease model presented here. Additionally,
hese parameters can be modeled as functions of environmen-
al and individual covariates, and this permits rigorous testing
f hypotheses regarding the influence of individual or environ-
ental covariates on model parameters. The implementation

f the information-theoretic approach within the CMR model-
ng framework allows multi-model comparison, and selection
f the most parsimonious model using the Akaike’s informa-
ion criterion (AIC). Finally, software packages such as program
ARK provide a flexible architecture for the implementation

f multi-state CMR models for parameter estimation and mod-
ling (White and Burnham, 1999; Williams et al., 2002).

Despite their enormous potential for providing rigorous
stimates of parameters for models of infectious diseases,
ulti-state CMR models have received little attention in the

pidemiological literature. Faustino et al.’s (2004) study is an
xcellent example of the application of CMR framework for
stimating disease transmission and recovery rates from field
ata. They investigated the seasonal variation in survival
robability, the encounter rate, and transmission and recov-
ry rates of Mycoplasma gallisepticum infection in a house finch
opulation over 3 years. Effects of sex and temperature were
lso examined, and parameters were estimated using the
ost parsimonious model selected from a candidate model

et (Faustino et al., 2004).

In summary, the model presented here provides a flexible

ramework for modeling the dynamics of infectious diseases
ith discrete disease states. The disease model is effectively

N = (I − T)−1 =

⎛
⎜⎜⎜⎜⎝

−ps +
p

(−ps + psˇ + 1
−p

(−ps + psˇ + 1)(−
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integrated with parameter estimation using multi-state CMR
models, and allows rigorous estimation of important quanti-
ties such as net reproductive ratio R0 of the disease and growth
rate of the population, and permits estimation of the sensitiv-
ity and elasticity of R0 and � to model parameters. Moreover,
the model allows a flexible framework for incorporating influ-
ences of overall or state-specific density of the population,
prevalence of the disease, and vegaries of stochastic influ-
ences. With the growing demand for robust estimates of model
parameters and the need for a unified protocol in epidemio-
logical modeling (Koopman, 2004), the modeling framework
outlined in this paper provides the much needed impetus
towards the effective integration of theoretical and empirical
epidemiological research.
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Appendix I

A.1. Estimating R0 for the SIR model

For the SIR model in (Eq. (2)), the transition matrix T is

T =

⎛
⎜⎝

ps(1 − ˇ) 0 0

psˇ (1 − �)pi 0

0 pi� pr

⎞
⎟⎠ , (A.1)

where the element tij quantifies the probability that an individ-
ual in disease state j at time t is alive and in state i at time t + 1.
The entry fij of the reproductive matrix F in a disease model
dynamics is the rate at which i-type new infections are pro-
duced by infective individuals in stage j. Because there is only
one infective state in the SIR model, only one type of infec-
tion is produced by only one type of infectives; consequently,
only the entry f22 is nonzero. If transmission of the disease is
strictly horizontal, the fertility matrix is

F =

⎛
⎜⎝

0 0 0

0 psˇ 0

0 0 0

⎞
⎟⎠ . (A.2)

Note that this definition of f22 is based on the assumption that

infection occurs toward the end of the interval (t to t + 1); this
assumption can be relaxed or modified as desired. The funda-
mental matrix N is (Caswell, 2001):

1
psˇ + 1

0 0

sˇ

)(−pi + pi� + 1)
1

(−pi + pi� + 1)
0

ipsˇ�

pi + pi� + 1)(pr − 1)
−pi�

(−pi + pi� + 1)(pr − 1)
−1

pr − 1

⎞
⎟⎟⎟⎟⎠ . (A.3)
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The next generation matrix R is the product of the fertility and
the fundamental matrices:

R=FN=

⎛
⎜⎜⎝

0 0 0

p2
sˇ2

(−ps + psˇ+1)(−pi + pi� + 1)
psˇ

(−pi + pi� + 1)
0

0 0 0

⎞
⎟⎟⎠ ,

(A.4)

where rij (ij-th entry of the matrix R) quantifies the expected
number of i-type new infections produced by an infective indi-
vidual starting life in state j over the duration of the infection
(i.e., lifetime of the infection). The dominant eigenvalue of the
matrix, R is an estimate of the basic reproduction ratio R0 of
the disease:

R0 = psˇ

(1 − pi + pi�)
. (A.5)

Appendix II

B.1. Sensitivity of R0 to the SIR model parameters

The sensitivity of R0 to changes in model parameters is
obtained by differentiating R0 with respect to each variable
in Eq. (A.5):

∂R0

∂̌
= ps

−pi + pi� + 1
, (B.1)

∂R0

∂�
= −pspiˇ

(−pi + pi� + 1)2
, (B.2)

∂R0

∂ps
= ˇ

−pi + pi� + 1
, (B.3)

∂R0

∂pi
= psˇ(� − 1)

(−pi + pi� + 1)2
. (B.4)
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