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Abstract: The line transect distance sampling method provides unbiased estimates of abundance when organisms are 
distributed randomly or line transects are laid out randomly, sample sizes are large and other assumptions of the method 
are met; such, however, is rarely the case in real life. We conducted a simulation study to investigate how spatial 
distribution and density of objects, and total length, layout and number of transects influence bias, precision, and accuracy 
of estimates of abundance obtained by distance sampling along line transects. Overall, density estimated using the 
distance sampling method was within 4.9% of the true density, but it varied substantially depending upon spatial 
distribution of objects. Of the three spatial distribution patterns considered, estimates of density were least biased, and 
most precise and accurate when objects were distributed randomly; they were most biased, and least precise and accurate 
when objects followed a clumped distribution. The estimated bias (% difference between true density and estimated 
density) for clumped, random and uniform distribution was 13.1%, -0.4%, and 2.1%, respectively; precision (% 
coefficient of variation, CV(  D̂ )) was 13.7%, 9.1%, and 9.2%; and accuracy (root mean-squared error, RMSE) was 
27.9%, 7.4%, and 11.7% for clumped, random, and uniform distribution, respectively. Increasing total transect length and 
using several short transects (as opposed to few long transects) generally reduced bias, and increased accuracy and 
precision of estimates of abundance. A systematic layout of transects worked as well as, or better than, random layout, 
except when objects were distributed uniformly in space. This study advances the utility of the line transect method by 
providing information both on how study design affects accuracy and precision of abundance estimates, and how it can be 
improved when assumptions of the method are not strictly met based on a priori knowledge of the spatial distribution and 
presumed density of the target organism through appropriate changes in the study design.  
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INTRODUCTION 

 One of the fundamental questions in ecology and conser-
vation biology is: how many are there (Williams et al., 
2002)? Indeed, abundance is perhaps the most sought after 
piece of information in ecology and wildlife management 
(Mills, 2007). With the cost of total counts being prohibitive 
in many cases, researchers and resource managers often 
employ sampling methodologies to obtain reasonable esti-
mates of population size. Distance sampling along line trans-
ects (hereafter “line transect”) is a popular and statistically 
robust method for estimating abundance of organisms 
(Buckland et al., 2001, Krzysik, 2002, Williams et al., 
2002). Implementation of this method involves laying out 
transects either randomly or systematically at predetermined 
distances, walking along the line transects detecting objects, 
and recording sighting angles and sighting distances, or 
perpendicular distances of objects to the line. If assumptions 
are met, the distance sampling (hereafter, line transect) 
method is efficient, cost-effective and provides rigorous 
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estimates of abundance (Buckland et al., 2001, Nomani  
et al., 2008). Consequently, this method has been used for 
estimating abundance of many species of birds (Hanowski  
et al., 1990, Jarvinen and Vaisanen, 1975) terrestrial and 
marine mammals (Calambokidis and Barlow, 2004, 
Jefferson, 1996, Plumptre, 2000, Ruette et al., 2003), reptiles 
(Krzysik, 2002, Lewis et al., 1985, Nomani et al., 2008), 
amphibians (Donnelly and Guyer, 1994, Lewis et al., 1985), 
and plants (Abrahamson, 1984, Gentry and Emmons, 1987). 
Line transect method has also been used for estimating 
abundance of bird nests (Hashimoto, 1995), dung (Ellis and 
Bernard, 2005, Marques et al., 2001), and burrows 
(Lohoefener, 1990, Nomani et al., 2008, Swann et al., 2002) 
as indices of animal abundance (Borchers et al., 1998, 
Buckland et al., 2001). While the line transect method is 
now widely accepted and used, it is usually applied with the 
assumption of random distribution of the target species or 
random sampling of the organisms. The line transect method 
makes the following assumptions (Buckland et al., 2001, 
Williams et al., 2002): (1) transect lines are randomly 
positioned with respect to the distribution of objects (or 
equivalently, objects are randomly distributed in space; (2) 
objects directly on the transect lines are detected with 
certainty; (3) objects are detected at their initial locations, 
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and the location of objects is not influenced by the 
observer’s presence or observation process; (4) detection of 
individual objects are independent events; and (5) measure-
ments are exact. This method provides unbiased estimates of 
abundance when aforementioned assumptions are met 
(Buckland et al., 2001, Williams et al., 2002). However, it is 
frequently not possible to meet these assumptions in 
practice. We know that distribution of organisms can follow 
spatial patterns based on concentrated areas of critical 
habitats or resources (e.g., food, appropriate shelter), or 
respond to density-dependent cues from conspecifics (e.g., 
competition, social behaviors, allelopathy); consequently, 
organisms frequently are not distributed randomly in space. 
Time and funding limitations usually do not permit extensive 
field efforts that are required to meet the assumptions of the 
method and to obtain large enough sample sizes for unbiased 
and precise estimates of abundance. While investigators may 
not have full a priori knowledge of species distribution 
patterns, in many cases generalizations can be made or pilot 
studies can provide distributional information. 
 The accuracy and precision of estimates of abundance 
obtained from the line transect method may vary depending 
upon the spatial distribution, and density of objects, and total 
length, layout, and number of line transects. Researchers 
cannot change the spatial distribution or density of objects, 
but it is usually possible to design a study by varying the 
total length, layout, and number of transects in order to 
maximize accuracy and precision of estimates of abundance 
for a given spatial distribution and density of objects. Given 
the large number of factors involved, questions such as these 
are difficult to resolve empirically, but can be addressed 
effectively using simulations.  
 We conducted a simulation study to address the follow-
ing questions: 1) Which spatial distribution pattern of objects 
is the line transect method most appropriate for? 2) For a 
given spatial distribution, do estimates of abundance depend 
on object density? 3) For a given spatial distribution and 
density of objects, how can one optimize the study design by 
varying total transect length, transect layout pattern, and 
number of transects in order to maximize accuracy and 
precision of estimates of abundance? We hypothesized that: 
1) estimates of abundance obtained from the line transect 
method would be less biased, and more precise and accurate 
when objects were randomly distributed in space; 2) for a 
given spatial distribution pattern, precision of estimates of 
abundance would increase with increasing object density; 3) 
increasing total transect length would increase the accuracy 
and precision of estimates of abundance for all spatial 
distribution patterns and density levels; 4) for clumped and 
uniform distributions of objects, transects laid out randomly 
with respect to objects would provide more accurate and 
precise estimates of abundance; and 5) for a random distri-
bution of objects, transect layout and transect number would 
not have a substantial effect on the accuracy and precision of 
estimates of abundance. 

METHODS 

Simulation Inputs 
 We considered three spatial distributions of objects: 
clumped, random and uniform. Within each spatial distribu-

tion we used three levels of object densities: low (2 objects 
ha-1), medium (6 objects ha-1), and high (10 objects ha-1). For 
each combination of spatial distribution and density level, 
we used: a) three levels of transect length, quantified as the 
total linear extent of transect lines in the study area in m ha-1 
(hereafter, “transect density”): 10 m ha-1, 20 m ha-1, and  
30 m ha-1; b) two transect layout patterns: random and syste-
matic transect layout; c) and two levels of total number of 
transects: few long and several short transects. Considering 
all three spatial distributions, there was a total of 216 unique 
combinations of input variables. 

Spatial Distribution and Density of Objects 

 Using MATLAB (Mathworks) we designed an 800 ha 
study area and generated objects within the study area for the 
following spatial distributions: uniform grid (hereafter, uni-
form), random (sometimes also referred to as uniform ran-
dom distribution), and clumped (Krebs, 1999). For a uniform 
distribution, we evenly spaced the objects throughout the 
study area (Zollner and Lima, 1999). For a random distribu-
tion, each object was distributed independently of all other 
objects. We implemented this by generating the x and y 
coordinates for the object using a uniform random distribu-
tion throughout the study area (Zollner and Lima, 1999). For 
a clumped distribution, objects were aggregated in groups or 
patches. To implement this, we randomly distributed parent 
objects in the study area, and using a random Gaussian 
distribution with the parent object location as the mean, and 
variance ν (ranging from 2 to 5) depending upon the density 
of objects, we generated “offspring” around each parent 
object (Conradt et al., 2003, Zollner and Lima, 1999). This 
ensured that offspring objects were more likely to be closer 
to the parents than father away from them, creating clusters 
centered on the parent objects. The number of parent objects 
was a randomly selected integer between 25 and 50. We 
divided the total population size (i.e., total number of 
objects) by the number of parent objects to determine the 
number of “offspring” around each parent. Offspring that fell 
outside the borders of the study area were deleted and the 
overall object density was readjusted.  
 To evaluate the effect of object density on estimates of 
abundance obtained from the line transect method we used 
object densities of 2, 6, and 10 objects ha-1 for each spatial 
distribution.  

The Pattern of Line Transect Layout 

 We laid out line transects in two different patterns: syste-
matic and random. For a systematic transect layout, x and y 
coordinates and the angle θ for the first transect were 
predetermined. The coordinates were chosen to ensure that 
all line transects would fall inside the study area. We used 0, 
45 and 90 degrees for θ in order to provide an adequate 
representation of systematic transect layouts. Subsequent 
transects were then placed at 90 m intervals so as to prevent 
double-counting of objects from two adjacent transects. For 
a random transect layout several different sets of transects 
were laid out throughout the study area. The x and y 
coordinates and the angle θ for the first transect of each 
transect set was chosen at random. Subsequent transects 
were then placed at 90 m intervals parallel to the first 
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transect. We ensured that all transect sets were located inside 
the study area and did not overlap each other. 

Total Length of Line Transects 

 As noted previously, the total transect length was 
determined based on the density of transects in the study area 
in m ha-1. For instance, a transect density of 10 m ha-1 would 
result in a total transect length of 8000 m in an 800 ha study 
area. We used transect densities ranging from 10m ha-1 to 
30m ha-1 in increments of 10m ha-1. The length of all 
transects was equal within each simulation run. Based on the 
transect density used we chose the total number of transect 
sets in the study area as well as the number of transects in 
each set. 

Number of Transects 

 The number of transect sets and the number of transects 
within each set varied with transect density. For a random 
transect layout with few long transects, the number of 
transect sets for a transect density of 10 m ha-1 was 2, and for 
transect densities of 20 m ha-1 and 30 m ha-1. The number of 
transect sets was a randomly chosen integer between 3 or 4. 
The number of transects in each transect set was a randomly 
chosen integer between 4 and 6. For a systematic transect 
layout with few long transects, we used 1 transect set for all 
transect densities. The number of transects for a transect 
density of 10 m ha-1 was 7, and for transect densities of 20 m 
ha-1 and 30 m ha-1 the number of transects was a randomly 
chosen integer between 8 and 14. 
 For a random transect layout with several short transects, 
the number of transect sets for a transect density of 10 m ha-1 

was 3, and for transect densities of 20 m ha-1 and 30 m ha-1, 
the number of transect sets was a randomly chosen integer 
between 4 or 5. The number of transects in each transect set 
was a randomly chosen integer between 7 and 10. For a 
systematic transect layout with several short transects, we 
used 1 transect set for all transect densities. The number of 
transects for a transect density of 10 m ha-1 was 10, and for 
transect densities of 20 m ha-1 and 30 m ha-1, the number of 
transect was a randomly chosen integer between 11 and 19. 
The number of transects was chosen to satisfy either of two 
conditions: a few long transects, or several short transects. 

Data Collection and Analysis 

 We set the transect strip width (w) at 30 m. This was the 
width of the area searched on each side of the line transect; 
objects beyond 30 m from the line were not considered. We 
used the half normal detection function to determine whether 
objects within 30 m were detected. The half normal detection 
function is often a good choice as a key function in line 
transect sampling (Buckland et al., 2001). This took the form  

  
g(x) = exp(!x

2 / 2" 2 )  

where g(x) = probability of detecting an object at 
perpendicular distance x from the line, and σ = scale 

parameter defined as 
  
! = 2w(2" )

#
1

2  (Brown and Cowling, 
1998). 

 For each object within the strip width we generated a 
uniform random number between 0 and 1. If the random 
number was less than or equal to the detection probability 
obtained from the half normal detection function, the object 
was marked as detected; it was considered undetected 
otherwise. We measured the perpendicular distance of every 
object detected within the transect strip width of 30 m. We 
called Program DISTANCE (Thomas et al., 2003) from 
within MATLAB to analyze the data using a half normal 
cosine detection function to estimate density of objects (  D̂ ) 
and 95% confidence interval of estimated density (95% 
CI(  D̂ )). 

 We ran 1000 simulations for each combination of spatial 
distribution and density of objects, and layout, total length, 
and number of transects. The total number of simulation runs 
was 216000 for 216 unique combinations of input variables. 
We then compared estimated density obtained from the line 
transect method (  D̂ ) with the actual ‘true’ density (DT) for 
each combination of spatial distribution of objects, and 
layout, total length, and number of transects. We quantified 
bias of estimates of density as the mean of the difference 
between   D̂  and DT as a percentage of DT. Generally, 
precision was quantified as the replication-based coefficient 
of variation of   D̂  (CV(  D̂ ), %). However, we calculated the 
average of the model-based CV(  D̂ ) (computed by Program 
DISTANCE for each simulation run) to quantify precision 
for specific patterns of spatial distributions (e.g., clumped 
distribution, ignoring all other factors) (hereafter “model-
based”). Unless otherwise indicated, we report replication-
based estimates of precision. We quantified accuracy of 
estimates of density as the root mean squared error (RMSE) 
expressed as a percentage of true density DT following 
Williams et al. (2002). 
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where n is the sample size.  
 We also calculated the percentage of times 95% CI of 
estimates of density computed by Program DISTANCE 
contained DT (95% CID). We calculated the number of 
objects detected as a percentage of the total number of 
objects in the study area to investigate the effect of transect 
layout on spatial coverage of transects. We also calculated 
Pearson’s correlation coefficients to examine the linear 
relationship between object density and transect density, and 
bias, CV(  D̂ ), RMSE, and 95% CID.  
 We performed all statistical analyses using SAS® 
software (SAS Institute, 2004). 

RESULTS 

 Ignoring all factors (spatial distribution and density of 
objects, and total length, layout, and number of transects) 
bias, precision (model-based), and accuracy was 4.9%, 
11.0%, and 17.9%, respectively (Table 1). The 95% CI of   D̂  
contained DT 89.6% of the time; 9.2% of the time it was 
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below the lower limit of CI, and 1.1% of the time it was 
above the upper limit of CI (Table 1). Accuracy, as well as 
bias and precision, of estimates of density varied among 
spatial distribution patterns and densities of objects 
depending upon total length, layout, and number of transects 
(Table 1; Appendix A).  
 Bias across all three spatial distributions of objects 
(clumped, random and uniform) was less than 15%. Preci-
sion (model-based) ranged from 9.1% to 13.7%, and accu-
racy ranged from 7.4% to 27.9%, depending upon the spatial 
distribution of objects (Table 1). The number of objects 
detected as a percentage of total number of objects simulated 
ranged from 9 to 10% and was not substantially affected by 
transect layout.  
 Overall, estimates of density were least biased, and most 
precise and accurate when objects were distributed 
randomly; they were most biased, and least precise and 
accurate when objects followed a clumped distribution 
(Table 1). 

Clumped Distribution 

 Ignoring all other factors, bias was 13.1%, precision 
(model-based) was 13.7%, and accuracy was 27.9%. The 
95% CI of   D̂  contained DT 82.1% of the time; 17.3% of the 
time it was underestimated, and 0.6% of the time it was 
overestimated (Table 1).  

Effects of Object Density 

 Overall, object density was not correlated with bias (P = 
0.265), precision (P = 0.526), or accuracy (P = 0.266) of 

estimates of density, or the percentage of times 95% CI of 
  D̂  contained DT (P = 0.268). Bias, precision, and accuracy 
ranged from 15.8%, 20.0%, and 28.0%, respectively, when 
object density was 2 objects ha-1, to 13.4%, 18.7%, and 
25.1%, respectively, when object density was 10 objects ha-1, 
with no clear trend (Table 1). The percentage of times 95% 
CI of   D̂  contained DT decreased with increasing object 
density, ranging from 86.9% when object density was 2 
objects ha-1 to 78.6% when object density was 10 objects ha-

1. The percentage of times it was underestimated ranged 
from 12.7% to 20.7%, and the percentage of times it was 
overestimated ranged from 0.4% to 0.8% (Table 1). 

Effects of Object Density and Transect Density 

 Overall, increasing transect density reduced bias (P < 
0.001), and improved precision (P < 0.001) and accuracy (P 
< 0.001) of estimates of density, and also increased the 
percentage of times 95% CI of   D̂  contained DT (P =0.002) 
(Table 2). Bias of estimates of density decreased with 
increasing total length of transects, ranging from 6.1% to 
26.1%, depending upon object density and transect density. 
Likewise, precision, and accuracy of estimates of density 
increased with increasing transect density for all object 
densities, with precision ranging from 7.5% to 26.0%, and 
accuracy ranging from 10.2% to 41.0%, depending upon 
object density and transect density (Fig. 1A; Appendix A). 
The percentage of times 95% CI of   D̂  contained DT also 
increased with an increasing transect density, ranging from 
78.3% to 92.3% when object density was low, and 61.6% to 
92.2% when object density was medium (Fig. 1B; Appendix 

Table 1.  Estimates of Density Obtained from the Line Transect Method for 3 Spatial Distribution Patterns (Clumped, Random, 
and Uniform), and 3 Levels of Object Density (2, 6 and 10 Objects ha-1) 
Symbols: DT = true density of objects;   D̂ = estimated density of objects; 95% CI(  D̂ ) = 95% confidence interval of   D̂ ; RMSE = 
root mean squared error expressed as a percentage of DT; CV(  D̂ ) = coefficient of variation (%) of   D̂ ; Bias = mean difference 
between   D̂  and DT as a percentage of DT; 95% CID = percentage of times 95% CID contained DT; Under = percentage of times 
that DT was below the lower limit of 95% CID; and Over = percentage of times that DT was above the upper limit of 95% CID. 

 

Input DT   D̂  95% CI(  D̂ ) RMSE CV(  D̂ ) Bias 95% CID Under Over 

Overall 5.98 6.28 6.26 – 6.29 17.9% 11.0% a 4.9% 89.6% 9.2% 1.1% 

Clumped 5.93 6.71 6.68 – 6.74 27.9% 13.7% a 13.1% 82.1% 17.3% 0.6% 

2 objects ha-1 2.05 2.37 2.36 – 2.37 28.0% 20.0% 15.8% 86.9% 12.7% 0.4% 

6 objects ha-1 5.90 6.59 6.58 – 6.61 22.7% 17.4% 11.8% 80.8% 18.5% 0.7% 

10 objects ha-1 9.85 11.17 11.14 – 11.19 25.1% 18.7% 13.4% 78.6% 20.7% 0.8% 

Random 6.00 5.98 5.95 – 6.00 7.4% 9.1% a -0.4% 96.7% 2.4% 1.0% 

2 objects ha-1 2.00 2.18 2.18 – 2.19 16.0% 12.1% 9.1% 95.6% 3.8% 0.7% 

6 objects ha-1 6.00 5.91 5.74 – 5.92 8.3% 8.3% -1.4% 96.5% 2.5% 1.0% 

10 objects ha-1 10.00 9.84 9.83 – 9.84 5.0% 4.8% -1.6% 98.0% 0.9% 1.2% 

Uniform 6.02 6.15 6.12 – 6.17 11.7% 9.2%a 2.1% 90.1% 8.1% 1.8% 

2 objects ha-1 2.00 2.22 2.22 – 2.30 21.9% 16.9% 11.2% 86.2% 13.8% 0.1% 

6 objects ha-1 6.04 5.74 5.73 – 5.74 7.9% 6.4% -5.0% 95.8% 0.1% 4.1% 

10 objects ha-1 10.01 10.47 10.46 – 10.49 10.4% 8.9% 4.6% 88.4% 10.3% 1.4% 
a Average of model-based coefficient of variation of estimated density.  
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A). However, when object density was high, the percentage 
of times 95% CI of   D̂  contained DT ranged from 55.5% to 
91.1%, with no clear trend (Fig. 1; Appendix A). The 
average transect density had a significant effect on bias (P = 
0.003), precision (P = 0.001), and accuracy (P <0.001) of 
estimates of density, and on the percentage of times 95% CI 
of   D̂  contained DT (P ≤0.001) (Table 2). 

Effects of Object Density and Transect Layout 

 Bias ranged from 10.7% to 17.6%, precision ranged from 
17.1% to 22.1%, and accuracy ranged from 21.7% to 31.3%, 
depending upon object density and transect layout, with no 
clear trend (Fig. 1C; Appendix A). The percentage of times 
95% CI of   D̂  contained DT ranged from 72.1% to 90.5%, 
and was higher when transect layout was systematic (Fig. 
1D; Appendix A). 

Effects of Object Density and Transect Number 

 For all object densities, the bias of estimates of density 
when using few long transects was less than when using 
several short transects, however, precision was lower. Bias 
ranged from 10.4% to 20.7%, and precision ranged from 
14.1% to 22.0% depending upon object density and transect 
number (Appendix A). Accuracy ranged from 20.7% to 
29.6%, depending upon object density and transect number, 
with no clear trend (Fig. 1E; Appendix A). The percentage 
of times 95% CI of   D̂  contained DT ranged from 75.6% to 
90.4%, and was higher when a few long transects were used 
(Fig. 1F; Appendix A). 

 

Effects of Object Density, and Transect Density, Layout, 
and Number 

 Taking into account all factors for a clumped distribution 
of objects, accuracy was the highest (5.8%) for an object 
density of 6 objects ha-1, a transect density of 30 m ha-1, a 
systematic transect layout, and few long transects. Bias was 
4.2%, precision was 3.9%, and 95% CI of   D̂  contained DT 
99.8% of the time (Appendix A). 

Random Distribution 

 Ignoring all other factors, bias was -0.4%, precision 
(model-based) was 9.1%, and accuracy was 7.4%. The 95% 
CI of   D̂  contained DT 96.7% of the time; 2.3% of the time it 
was underestimated, and 1.0% of the time it was 
overestimated (Table 1).  

Effects of Object Density 

 Overall, the bias of the estimate of abundance decreased 
(P < 0.001), and precision (P < 0.001) and accuracy (P < 
0.001) increased as object density increased (Table 2). Bias 
ranged from -1.4% to 9.1% depending upon object density, 
with no clear trend (Table 1). Precision and accuracy 
increased from 12.1%, and 16.0%, respectively, when object 
density was 2 objects ha-1, to 4.8%, and 5.0%, respectively, 
when object density was 10 objects ha-1 (Table 1). The 
percentage of times 95% CI of   D̂  contained DT increased 
with increasing object density, ranging from 95.6% to 
98.0%, but the effect was not significant (P = 0.394) (Tables 
1, 2). The percentage of times it was underestimated ranged  
 

Table 2.  Correlation (Pearson’s) between Measures of Bias, Precision and Accuracy, and Input Variables for 3 Spatial 
Distribution Patterns (Clumped, Random, and Uniform). OD is Density of Objects (Objects ha-1)  

 Variables and Symbols: TD = transect density (ha-1); Avg. length = average transect density (m ha-1); RMSE = root mean squared 
error expressed as a percentage of DT; CV(  D̂ ) = coefficient of variation of   D̂  (%); Bias = mean of the difference between   D̂  
and DT as a percentage of DT; and 95% CID = percentage of times that 95% CID contained DT. P-values are presented within 
parentheses for each correlation coefficient. 

 

Input RMSE (P-value) CV(  D̂ ) (P -value) Bias (P-value) 95% CI(  D̂ ) (P -value) 

Clumped     

OD -0.19 (0.266) -0.11 (0.526) -0.19 (0.265) -0.19 (0.268) 

TD -0.79 (<0.001) -0.68 (<0.001) -0.59 (<0.001) 0.50 (0.002) 

Avg. length -0.60 (<0.001) -0.52 (0.001) -0.47 (0.003) 0.65 (<0.001) 

Random     

OD -0.80 (<0.001) -0.68 (<0.001) -0.58 (<0.001) 0.15 (0.394) 

TD -0.37 (0.027) -0.49 (0.003) 0.01 (0.967) 0.05 (0.757) 

Avg. length -0.24 (0.163) -0.54 (<0.001) 0.21 (0.217) 0.42 (0.010) 

Uniform     

OD -0.44 (0.007) -0.46 (0.005) -0.26 (0.127) 0.03 (0.877) 

TD -0.12 (0.473) -0.21 (0.211) 0.01 (0.975) -0.23 (0.187) 

Avg. length 0.38 (0.024) 0.24 (0.159) 0.22 (0.202) -0.65 (<0.001) 
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from 0.9% to 3.8%, and the percentage of times it was 
overestimated ranged from 0.7% to 1.2% (Table 1).  

Effects of Object Density and Transect Density 

 Overall, an increase in total transect density increased 
precision (P = 0.003) and accuracy (P = 0.027) of estimate 
of density; however, it had no effect on bias (P = 0.967) or 

the percentage of times 95% CI of   D̂  contained DT (P = 
0.757) (Table 2). Bias ranged from -1.0% to 9.5% depending 
upon object density and  transect density, with  no clear trend  
 (Appendix A). Precision and accuracy of estimates of 
density increased with increasing transect density for all 
object densities. Precision ranged from 3.4% to 14.1%, and 
accuracy ranged from 3.5% to 18.1%, depending upon object 

 
Fig. (1). The effect of total transect density (m ha-1), transect layout, and transect number on the accuracy of estimates of density obtained 
from the line transect method, and on the percentage of times 95% CI of estimated density contained the true density, for a clumped spatial 
distribution, and object densities ranging from 2 objects ha-1 to 10 objects ha-1. The root mean squared error expressed as a percentage of DT 
(RMSE) is plotted against (A) transect density (m ha-1), (C) transect layout, and (E) transect number for different object densities. The 
percentage of times 95% CI of   D̂  contained DT (95%CID) is plotted against (B) transect density (m ha-1), (D) transect layout, and (F) 
transect number, for different object densities. 
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density and transect density (Fig. 2A; Appendix A). The 
percentage of times 95% CI of   D̂  contained DT ranged from 
92.8% to 98.5%, with no clear trend (Fig. 2B; Appendix A). 
Average transect density significantly influenced precision 
of estimates of density (P = 0.001), and the percentage of 
times 95% CI of   D̂  contained DT (P = 0.010), but not bias 
(P = 0.217) or accuracy (P = 0.163) of estimates of density 
(Table 2). 

Effects of Object Density and Transect Layout 

 For all object densities, the bias of estimates of density 
was lower when using a random transect layout; however, 
precision also was lower. Bias ranged from 0.2% to 12.1%, 
and precision ranged from 3.4% to 14.4%, depending upon 
object density and transect layout (Appendix A). Accuracy 
ranged from 3.9% to 16.5% depending upon object density 
and transect layout, with no clear trend (Fig. 2C; Appendix 

 
Fig. (2). Effect of total transect density (m ha-1), transect layout, and transect number on the accuracy of estimates of density obtained from 
the line transect method, and on the percentage of times 95% CI of estimated density contained the true density, for a random spatial 
distribution, and object densities ranging from 2 objects ha-1 to 10 objects ha-1. The root mean squared error expressed as a percentage of DT 
(RMSE) is plotted against (A) transect density (m ha-1), (C) transect layout, and (E) transect number for different object densities. The 
percentage of times 95% CI of   D̂  contained DT (95%CID) is plotted against (B) transect density (m ha-1), (D) transect layout, and (F) 
transect number, for different object densities. 
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A). The percentage of times 95% CI of   D̂  contained DT 
ranged from 93.1% to 99.6%, and was higher when using a 
systematic transect layout (Fig. 2D; Appendix A). 

Effects of Object Density and Transect Number 

 For all levels of object densities, there was no clear trend 
in the effect of transect number on bias, precision, or 
accuracy of estimates of density. Bias ranged from -0.9% to 
9.9%, precision ranged from 4.6% to 12.2%, and accuracy 
ranged from 4.9% to 16.6%, depending upon object density 
and transect number, with no clear trend (Fig. 2E; Appendix 
A). The percentage of times 95% CI of   D̂  contained DT 
ranged from 94.3% to 98.4%, with no clear trend (Fig. 2F; 
Appendix A). 

Effects of Object Density, and Transect Density, Layout, 
and Number 

 Taking into account all factors for a random distribution 
of objects, accuracy was highest (2.4%) for an object density 
of 10 objects ha-1, a transect density of 30 m ha-1, a syste-
matic transect layout, and few long transects. Bias was -
0.8%, precision was 2.3%, and 95% CI of   D̂  contained DT 
100% of the time (Appendix A). 

Uniform Distribution 

Ignoring all other factors, bias was 2.1%, precision (model-
based) was 9.2%, and accuracy was 11.7%. The 95% CI of 
  D̂  contained DT 90.1% of the time; 8.1% of the time it was 
underestimated, and 1.8% of the time it was overestimated 
(Table 1).  

Effects of Object Density 

 Overall, an increase in object density improved precision 
(P = 0.005) and accuracy (P = 0.007), but it did not have a 
significant effect on bias (P = 0.127) and on the percentage 
of times 95% CI of   D̂  contained DT (P = 0.877) (Table 2). 
Bias ranged from 4.6% to 11.2%, depending upon object 
density, and decreased with increasing object density (Table 
1). Precision ranged from 6.4% to 16.9%, and accuracy 
ranged from 7.9% to 21.9%, depending upon object density, 
with no clear trend (Table 1). The percentage of times 95% 
CI of   D̂  contained DT ranged from 86.2% to 95.8%, with no 
clear trend. The percentage of times it was underestimated 
ranged from 0.1% to 13.8%, and the percentage of times if 
was overestimated ranged from 0.1% to 4.1% (Table 1). 

Effects of Object Density and Transect Density 

 Increasing transect density did not significantly influence 
bias (P = 0.975), precision (P = 0.211), or accuracy (P = 
0.473) of estimates of density, or on the percentage of times 
95% CI of   D̂  contained DT (P = 0.187) (Table 2). Bias 
ranged from 3.5% to 11.9% depending upon object density 
and transect density, with no clear trend. When object den-
sity was medium or high, precision increased with increasing 
transect density, ranging from 5.2% to 9.3%, depending 
upon object density and transect density). However, when 
object density was low, precision ranged from 15.4% to 
17.9%, depending upon transect density, with no clear trend 

(Appendix A). Accuracy ranged from 7.2% to 23.2% 
depending upon object density and transect density, with no 
clear trend (Fig. 3A; Appendix A). The percentage of times 
95% CI of   D̂  contained DT ranged from 79.1% to 98.4%, 
with no clear trend (Fig. 3B; Appendix A). Average transect 
density did not have a significant effect on bias (P = 0.202) 
or precision (P = 0.159) of estimates of density; however, the 
effect on accuracy (P = 0.024) and on the percentage of 
times 95% CI of   D̂  contained DT (P < 0.001) was 
significant (Table 2).  

Effects of Object Density and Transect Layout 

 For all levels of object densities, bias of estimates of 
density was lower, and precision, accuracy, and the 
percentage of times 95% CI of   D̂  contained DT were higher 
when using a random transect layout. Bias ranged from -
0.5% to 14.8%, precision ranged from 4.9% to 17.3%, 
accuracy ranged from 4.9% to 24.8%, and the percentage of 
times 95% CI of   D̂  contained DT ranged from 81.9% to 
99.0%, depending upon object density and transect layout 
(Figs. 3C and 3D; Appendix A). 

Effects of Object Density and Transect Number 

 Bias of estimates of density ranged from 3.9% to 13.8%, 
depending upon object density and transect number, with no 
clear trend. Precision ranged from 6.4% to 18.5%, accuracy 
ranged from 7.6% to 25.1%, and the percentage of times 
95% CI of   D̂  contained DT ranged from 82.0% to 96.4%, 
depending upon object density and the number of transects, 
and were higher when using several short transects, for all 
levels of object densities (Figs. 3E and 3F; Appendix A). 

Effects of Object Density, and Transect Density, Layout, 
and Number 

 Taking into account all factors for a uniform distribution 
of objects, accuracy was highest (3.0%) for an object density 
of 6 objects ha-1, a transect density of 30 m ha-1, a random 
transect layout, and several short transects. Bias was -0.2%, 
precision was 3.0%, and 95% CI of   D̂  contained DT 99.3% 
of the time (Appendix A).  

DISCUSSION 

 Many ecological studies and species conservation efforts 
require reliable estimates of abundance. For example, esti-
mates of abundance are needed for estimating harvest quota, 
determining conservation status and for evaluating the effect 
of management actions on a population (e.g., Williams et al., 
2002, Mills, 2007). Population size or density also is a state 
variable of interest in many models of population and 
community ecology, and of disease dynamics (e.g., Williams 
et al., 2002, Case, 2000, Caswell, 2001, Keeling and Rohani, 
2008). Thus, the importance of accurate and precise esti-
mates of abundance cannot be overemphasized.  
 When the assumptions are met, the line transect method 
provides unbiased estimates of density. Frequently, however, 
these assumptions are violated to an unknown degree. For 
example, organisms in nature are rarely randomly distributed 
and it is logistically difficult, if not impossible, to lay 
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transect lines randomly. Thus, it is instructive to know 
whether and to what extent violation of the key assumptions 
influence accuracy and precision of density estimates, and 
whether or not it is possible to reduce bias, and improve 
accuracy and precision of density estimates through study 
design (e.g., by altering total  length, layout, and  the number  
of transects). This, however, requires an understanding of 
how total length, layout, and the number of transects inf-

luence accuracy and precision of estimates of densities, and 
of how these influences might vary depending upon the 
spatial distribution pattern and density of study objects. In 
this study, we investigated the influence of total length, lay-
out, and number of transects on bias, precision, and accuracy 
of estimates of density for different spatial distribution pat-
terns and densities of objects. Specifically, we asked the 
following questions: (1) How does accuracy and precision of 

 
Fig. (3). Effect of total transect density (m ha-1), transect layout, and transect number on accuracy of estimates of density obtained from the 
line transect method, and on the percentage of times 95% CI of estimated density contained the true density, for a uniform spatial 
distribution, and object densities ranging from 2 objects ha-1 to 10 objects ha-1. The root mean squared error expressed as a percentage of DT 
(RMSE) is plotted against (A) transect density (m ha-1), (C) transect layout, and (E) transect number for different object densities. The 
percentage of times 95% CI of   D̂  contained DT (95%CID) is plotted against (B) transect density (m ha-1), (D) transect layout, and (F) 
transect number, for different object densities. 



34    The Open Ecology Journal, 2012, Volume 5 Nomani et al. 

estimates of abundance obtained from the line transect 
method vary across spatial distribution patterns? (2) How 
might these patterns be influenced by density of objects? (3) 
For a given spatial distribution and density level, how do 
layout, total length, and the number of transects influence 
accuracy and precision of density estimates?  
 Estimates of density obtained from the line transect 
method were within 4.9% of the true density, but varied 
substantially depending upon spatial distribution pattern of 
objects (Table 1). Overall, the line transect method worked 
best when objects were distributed randomly. All else being 
equal, bias was lowest, and precision and accuracy were 
highest when objects followed a random distribution. Addi-
tionally, 95% CI contained true density over 95% of the time 
(and in cases, as frequently as 98%) of the time (Table 1; 
Fig. 2). Consequently, it is reasonable to conclude that the 
line transect method may be most appropriate for estimating 
abundance when objects or organisms approximate a random 
distribution pattern. In contrast, the line transect method was 
most biased, and least accurate and precise when objects 
followed a clumped spatial distribution pattern (Table 1; Fig. 
1). Additionally, the percentage of times 95% CI of estima-
ted density contained true density was smaller than expected, 
sometimes ≤80% of the time. These findings suggest that 
caution must be exercised when interpreting point estimates 
as well as confidence intervals of these estimates, particu-
larly when objects follow a clumped distribution pattern.  
 When the distribution pattern of objects was clumped, 
there was no clear trend for the effect of object density on 
bias, precision, or accuracy of estimates of density. The 
percentage of times 95% CI of estimated density contained 
true density decreased with increasing object density (Table 
1), but object density did not have a significant effect on 
bias, precision, or accuracy of estimates of density, or on the 
percentage of times 95% CI of estimated density contained 
true density (Table 2). When objects were distributed ran-
domly, accuracy of estimates of density increased with 
increasing object density. Precision of estimates of density 
increased with increasing object density; however, there was 
no clear trend in bias of estimates of density. The percentage 
of times 95% CI of estimated density contained true density 
increased with increasing object density (Table 1). Object 
density had a significant effect on bias, precision, and 
accuracy of estimates of density, however, the effect on the 
percentage of times 95% CI of estimated density contained 
true density was not significant (Table 2). When objects 
were distributed uniformly, bias of estimates of density 
increased with increasing object density, but there was no 
clear trend for the effect of object density on precision, or 
accuracy of estimates of density, or on the percentage of 
times 95% CI of estimates density contained true density 
(Table 1). Object density had a significant effect on precision 
and accuracy of estimates of density, and the effect on bias 
and on the percentage of times 95% CI contained true 
density, was not significant (Table 2). 
 The results of our study were consistent with most of our 
hypotheses. The line transect method worked best when 
objects followed a random spatial distribution. However, 
accuracy of estimates of density was less than desired for a 
clumped distribution of objects (RMSE = 27.9%; Table 1).  
 

For a random distribution of objects, precision of estimates 
of density increased with increasing object density; however, 
when object distribution was clumped or uniform, there was 
no clear trend in the effect of object density on precision of 
estimates of density. Consistent with our hypothesis, accu-
racy of estimates of density increased with an increasing 
total length of transects for random and clumped distri-
butions (Figs. 1A and 2A). Specifically, for a clumped distri-
bution, there was a significant increase in accuracy, and a 
significant decrease in bias of estimates of density for all 
levels of object density when transect density increased from 
10 to 20 m ha-1 (Fig. 1A; Appendix A). However, for a 
uniform distribution of objects, there was no clear trend in 
the effect of transect density on accuracy of estimates of 
density (Fig. 3A). For a clumped distribution, transect layout 
did not seem to have a substantial effect on bias, precision, 
or accuracy of estimates of density for all values of object 
densities (Fig. 1C; Appendix A).  
 For a given total transect density, using several short (as 
opposed to few long) transects provided greater precision 
when objects approximated a clumped spatial distribution 
pattern. Additionally, using several short transects provided 
slightly greater accuracy when object density was medium, 
or high. However, bias of estimates was lower when using 
few long transects for all object densities (Appendix A). 
Consistent with our hypothesis, a random transect layout 
worked very well when objects were distributed randomly or 
uniformly (Figs. 2C, 2D, 3D, and 3C; Appendix A). 
Buckland et al. (2001) discuss in detail the importance of 
replication of transects, and stress that a minimum of 10 to 
20 replicate lines should be surveyed to provide a basis for 
adequate variance estimation. In our study, the average 
number of transects simulated for each of the three spatial 
distributions (clumped, random, and uniform) was approxi-
mately 11 and 18 when using few long transects and several 
short transects, respectively. A systematic placement of lines 
has been suggested to provide a better spatial coverage and 
precision of estimates of density when objects are randomly 
and independently distributed (Buckland et al., 2001). In our 
study, transect layout did not influence the number of objects 
detected (as a percentage of the total number of objects 
simulated), but significantly influenced precision of esti-
mates of abundance, especially when objects were distri-
buted randomly or uniformly (Appendix A). For random and 
clumped distribution patterns, a systematic transect layout 
provided a slightly greater precision regardless of density of 
objects, but there was no clear trend for the effect of transect 
layout on accuracy, precision, or bias of estimates of 
abundance when objects were distributed uniformly (Fig. 3; 
Appendix A).  
 When objects followed a random distribution, results 
were very similar when using a systematic and a random 
transect layout for all levels of object density (Fig. 2; 
Appendix A). For uniformly distributed objects, the line 
transect method worked better when using a random than a 
systematic transect layout (Fig. 3; Appendix A). When 
objects followed a clumped distribution, results did not vary 
substantially based on the pattern of transect layout (syste-
matic or random), although the percentage of times that 95% 
CI of estimated density contained true density was higher for 
a systematic transect layout (Fig. 1; Appendix A). 
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 Fowler (1986) found that the total length of transects did 
not significantly influence the accuracy of estimates of 
density; however, precision was variable with the smallest 
transect density providing the least precise estimates of den-
sity. In our study, average transect density had a significant 
effect on accuracy of estimates of density when distribution 
of objects was clumped or uniform, and on precision of 
estimates of density when distribution of objects was 
clumped or random (Table 2). For a clumped and random 
distribution, accuracy and precision of estimates of density 
and 95% CI coverage of DT generally increased with an 
increasing transect density for all object densities (Figs. 1-2; 
Appendix A). However, an increase in transect density did 
not significantly influence the accuracy, but improved the 
precision, of estimates of density (Fig. 3; Appendix A).  
 Our study further corroborates the claim that the line 
transect method provides unbiased and precise estimates of 
abundance when assumptions of the method are met and 
sample sizes are adequate (Buckland et al., 2001, Williams 
et al., 2002). However, it is rarely possible to strictly meet 
all the assumptions of this method or to obtain large sample 
sizes while sampling animal populations due to time and 
resource limitations, inaccessibility of the study site or other 
logistic difficulties. Under such situations, our study shows 
that accuracy and precision of estimates of abundance can be 
improved by considering spatial distribution pattern and by 
appropriately modifying the study design. Spatial distribu-
tion of organisms is influenced by a suite of factors that may 
include habitat, food availability, and behavioral mecha-
nisms. A given species may not always follow a particular 
distribution pattern, and researchers can usually observe but 
not manipulate distribution and density of organisms. 
Nonetheless, a knowledge of the relative performance of the 
line transect method under the various spatial distribution 
patterns dictated by ecological constraints can help resear-
chers to identify potential limitations of the method, and 
suggest study designs that could help reduce bias and 
improve precision and accuracy of the estimates of density. 
We found that, overall, the line transect method was most 
effective for random, and least effective for a clumped 
distribution of objects. These results are of critical import-
ance because the spatial distribution patterns of many orga-
nisms tend to be non-random. Virtually all social animals 
follow clumped distribution, as do many other species that 
seek resources that are patchily distributed (Chapman, 1988, 
Burgess et al., 1982, Cornelissen and Stiling, 2008). 
Calambokidis et al. (2004) noted the difficulties in using line 
transect method for estimating abundance of near-shore, 
humpback and blue whales that exhibit clumped distribution 
pattern, and Buckland et al. (2007) suggested new app-
roaches for estimating abundance of strongly aggregated 
plant populations. Our study shows that, when spatial distri-
bution of objects is clumped or random, precision and accu-
racy of estimates of density obtained from the line transect 
method can generally be improved by increasing total length 
of transects, and by laying out the transects systematically. 
We also recommend using several short, rather than few 
long, transects, because this approach can help reduce bias 

and increase precision. Finally, we note that the line transect 
method can potentially underestimate abundance if spatial 
distribution of objects are nonrandom, and especially when 
distribution is clumped. The line transect method is often the 
most efficient and cost-effective method of estimating popu-
lation sizes (e.g., Nomani et al., 2008), and results presented 
in this paper will help refine the study design to maximize 
accuracy and precision of estimates of abundance based on 
the line transect method under conditions in the field. 
 The line transect method has been the method of choice 
for estimating abundance for many taxa because it adequa-
tely addresses two major challenges in abundance estima-
tion: spatial sampling and detectability (Williams et al., 
2002). Furthermore, compared to alternative approaches 
such as capture-recapture or total count, this method is 
efficient and cost effective (Williams et al., 2002, Buckland 
et al., 2001, Buckland et al., 2007, Nomani et al., 2008). 
However, conventional approaches to abundance estimation 
based on line transect distance sampling do not permit 
modeling abundance as a function of environmental cova-
riates that can affect both spatial distribution pattern and 
population density. To this end, it is encouraging to note that 
modeling approaches such as the hierarchical modeling 
framework of Royle et al. (2004), and its extension to allow 
temporary emigration (Chandler et al., 2011), will prove 
useful to improve accuracy and precision of density 
estimates and statistical inference regarding covariate effects 
on density. Finally, the availability of software packages 
such as unmarked (Fiske et al., 2012) will facilitate the 
implementation of recently developed density estimation and 
modeling approaches using data collected from distance 
sampling. Careful study design as per our recommendations, 
along with the application of recently developed modeling 
approaches to analyze and model the resulting data 
(Chandler et al., 2011, Royle et al., 2004) will undoubtedly 
help improve accuracy and precision of estimates of 
abundance using distance sampling methods. 
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Appendix 
Table A.  Estimates of Density of Objects Based on the Line Transect Method 
 Estimates of density are presented for 3 spatial distribution patterns, 3 levels of object density (OD; objects ha-1), 3 levels 

of total transect length quantified by transect density (TD; m ha-1), 2 levels of transect layout pattern (TL; r = random, 
and s = systematic layout of transects), and number of transects (TN; f = few long transects, and s = several short 
transects). Symbols are: DT = true density of objects ha-1;   D̂ = object density estimated based on the line transect method 
(objects ha-1); 95% CI(  D̂ ) = 95% confidence interval of   D̂ ; RMSE = root mean squared error expressed as percentage of 
DT; CV(  D̂ ) =  coefficient of variation of   D̂ ; Bias = mean of the difference between   D̂  and DT as a percentage of DT; and 
95% CID = the percentage of times that the 95% CI(  D̂ ) contained DT.  

 

Distribution OD TD TL TN DT   D̂  95% CI(  D̂ ) RMSE CV(  D̂ ) Bias 95% CID 

Clumped 2 10 - - 2.05 2.58 2.57 – 2.59 41.0 25.1 26.1 78.3 

Clumped 2 20 - - 2.05 2.28 2.27 – 2.29 19.5 14.1 11.5 90.1 

Clumped 2 30 - - 2.05 2.25 2.24 – 2.25 17.2 13.0 9.7 92.3 
            

Clumped 6 10 - - 5.90 7.16 7.13 – 7.20 35.0 22.7 21.5 61.6 

Clumped 6 20 - - 5.90 6.36 6.34 – 6.37 14.9 11.8 7.8 88.6 

Clumped 6 30 - - 5.90 6.26 6.24 – 6.27 10.2 7.7 6.1 92.2 
            

Clumped 10 10 - - 9.85 12.04 11.97 – 12.11 38.8 26.0 22.3 55.5 

Clumped 10 20 - - 9.85 10.79 10.76 – 10.81 15.6 11.3 9.5 91.1 

Clumped 10 30 - - 9.85 10.67 10.65 – 10.69 11.7 7.5 8.3 89.0 
            

Random 2 10 - - 2.00 2.19 2.18 – 2.20 18.1 14.1 9.5 98.5 

Random 2 20 - - 2.00 2.17 2.17 – 2.18 15.8 12.2 8.7 94.8 

Random 2 30 - - 2.00 2.18 2.18 – 2.19 13.9 9.6 9.2 93.5 
            

Random 6 10 - - 6.00 5.94 5.92 – 5.95 11.1 11.2 -1.0 92.8 

Random 6 20 - - 6.00 5.90 5.89 – 5.91 7.5 7.5 -1.7 98.2 

Random 6 30 - - 6.00 5.90 5.90 – 5.91 5.0 4.9 -1.6 98.4 
            

Random 10 10 - - 10.00 9.84 9.83 – 9.86 5.7 5.6 -1.6 98.0 

Random 10 20 - - 10.00 9.77 9.76 – 9.78 5.4 5.0 -2.3 97.6 

Random 10 30 - - 10.00 9.90 9.89 – 9.90 3.5 3.4 -1.0 98.3 

Uniform 2 10 - - 2.00 2.24 2.23 – 2.25 23.2 17.9 11.9 91.3 

Uniform 2 20 - - 2.00 2.20 2.19 – 2.21 19.6 15.4 9.9 88.1 

Uniform 2 30 - - 2.00 2.24 2.23 – 2.25 22.7 17.4 11.9 79.1 
            

Uniform 6 10 - - 6.04 5.75 5.74 – 5.76 9.1 8.1 -4.7 98.4 

Uniform 6 20 - - 6.04 5.74 5.73 – 5.74 7.2 5.5 -5.0 96.2 

Uniform 6 30 - - 6.04 5.72 5.72 – 5.73 7.2 5.2 -5.2 92.9 
            

Uniform 10 10 - - 10.01 10.36 10.34 – 10.80 10.2 9.3 3.5 91.0 

Uniform 10 20 - - 10.01 10.63 10.61 – 10.66 11.2 8.7 6.2 86.6 

Uniform 10 30 - - 10.01 10.43 10.41 – 10.44 9.6 8.4 4.1 87.5 
            

Clumped 2 - r - 2.05 2.41 2.39 – 2.42 31.3 22.1 17.6 76.2 

Clumped 2 - s - 2.05 2.36 2.35 – 2.36 26.8 19.2 15.2 90.5 
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Distribution OD TD TL TN DT   D̂  95% CI(  D̂ ) RMSE CV(  D̂ ) Bias 95% CID 

Clumped 6 - r - 5.90 6.53 6.50 – 6.56 21.7 17.1 10.7 73.1 

Clumped 6 - s - 5.90 6.61 6.60 – 6.63 23.0 17.4 12.2 83.4 
            

Clumped 10 - r - 9.85 10.93 10.88 – 10.99 23.7 18.9 11.0 72.1 

Clumped 10 - s - 9.85 11.24 11.21 – 11.28 25.5 18.6 14.2 80.7 
            

Random 2 - r - 2.00 2.00 2.00 – 2.01 14.5 14.4 0.2 94.0 

Random 2 - s - 2.00 2.24 2.24 – 2.25 16.5 10.0 12.1 96.1 
            

Random 6 - r - 6.00 5.95 5.93 – 5.96 8.9 8.9 -0.9 93.4 

Random 6 - s - 6.00 5.90 5.90 – 5.91 8.1 8.0 -1.6 97.5 
            

Random 10 - r - 10.00 9.96 9.94 – 9.98 7.2 7.2 -0.4 93.1 

Random 10 - s - 10.00 9.80 9.79 – 9.80 3.9 3.4 -2.0 99.6 
            

Uniform 2 - r - 2.00 2.01 2.01 – 2.01 9.0 8.9 0.5 98.9 

Uniform 2 - s - 2.00 2.30 2.29 – 2.30 24.8 17.3 14.8 81.9 
            

Uniform 6 - r - 6.04 6.01 6.00 – 6.01 4.9 4.9 -0.5 99.0 

Uniform 6 - s - 6.04 5.65 5.64 – 5.65 8.6 6.1 -6.5 94.8 
            

Uniform 10 - r - 10.01 10.08 10.06 – 10.10 7.3 7.2 0.7 96.1 

Uniform 10 - s - 10.01 10.61 10.59 – 10.62 11.2 9.0 5.9 85.8 
            

Clumped 2 - - f 2.05 2.27 2.26 – 2.28 26.3 21.6 10.9 90.4 

Clumped 2 - - s 2.05 2.47 2.46 – 2.48 29.6 17.6 20.7 83.5 
            

Clumped 6 - - f 5.90 6.51 6.49 – 6.53 24.6 20.2 10.4 84.8 

Clumped 6 - - s 5.90 6.68 6.66 – 6.69 20.7 14.1 13.2 76.8 
            

Clumped 10 - - f 9.85 11.04 11.00 – 11.09 27.5 22.0 12.1 81.5 

Clumped 10 - - s 9.85 11.29 11.26 – 11.32 22.4 14.8 14.6 75.6 
            

Random 2 - - f 2.00 2.20 2.19 – 2.20 16.6 12.2 12.1 94.3 

Random 2 - - s 2.00 2.17 2.16 – 2.17 15.4 12.0 14.6 96.8 
            

Random 6 - - f 6.00 5.88 5.87 – 5.89 7.4 7.3 9.9 98.4 

Random 6 - - s 6.00 5.95 5.94 – 5.96 9.0 9.1 8.4 94.6 
            

Random 10 - - f 10.00 9.86 9.86 – 9.87 5.1 4.9 -2.0 98.2 

Random 10 - - s 10.00 9.81 9.80 – 9.82 4.9 4.6 -0.9 97.7 
            

Uniform 2 - - f 2.00 2.28 2.27 – 2.28 25.1 18.5 -1.4 82.0 

Uniform 2 - - s 2.00 2.17 2.17 – 2.18 18.1 14.7 -1.9 90.3 
            

Uniform 6 - - f 6.04 5.71 5.70 – 5.71 8.1 6.4 -5.5 95.3 

Uniform 6 - - s 6.04 5.77 5.76 – 5.77 7.6 6.4 -4.5 96.4 
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(Table A) Contd….. 

Distribution OD TD TL TN DT   D̂  95% CI(  D̂ ) RMSE CV(  D̂ ) Bias 95% CID 

Uniform 10 - - f 10.01 10.40 10.39 – 10.42 10.9 9.8 3.9 84.7 

Uniform 10 - - s 10.01 10.54 10.53 – 10.56 9.8 7.8 5.3 92.0 
            

Clumped 2 10 r - 2.05 2.51 2.47 – 2.54 40.6 27.6 22.4 75.1 

Clumped 2 10 s - 2.05 2.60 2.59 – 2.62 41.1 24.1 27.3 79.4 

Clumped 2 20 r - 2.05 2.41 2.39 – 2.43 29.2 19.6 17.9 73.9 

Clumped 2 20 s - 2.05 2.24 2.23 – 2.24 15.0 10.7 9.4 95.5 

Clumped 2 30 r - 2.05 2.30 2.28 – 2.31 21.0 15.2 12.3 79.8 

Clumped 2 30 s - 2.05 2.23 2.22 – 2.23 15.8 12.0 8.9 96.5 
            

Clumped 6 10 r - 5.90 6.57 6.51 – 6.64 27.5 22.4 11.5 73.4 

Clumped 6 10 s - 5.90 7.36 7.32 – 7.40 37.1 22.1 24.8 57.7 

Clumped 6 20 r - 5.90 6.53 6.49 – 6.58 20.2 15.4 10.8 72.4 

Clumped 6 20 s - 5.90 6.30 6.28 – 6.31 12.7 10.0 6.8 94.0 

Clumped 6 30 r - 5.90 6.48 6.45 – 6.51 16.0 11.4 9.9 73.7 

Clumped 6 30 s - 5.90 6.18 6.17 – 6.19 7.3 5.2 4.8 98.4 
            

Clumped 10 10 r - 9.85 10.98 10.86 – 11.10 30.0 24.9 11.5 71.3 

Clumped 10 10 s - 9.85 12.40 12.32 – 12.48 41.3 25.6 25.8 50.2 

Clumped 10 20 r - 9.85 10.99 10.90 – 11.07 22.3 17.1 11.5 70.5 

Clumped 10 20 s - 9.85 10.72 10.70 – 10.74 12.7 8.4 8.8 98.0 

Clumped 10 30 r - 9.85 10.83 10.77 – 10.89 16.8 12.3 10.0 74.7 

Clumped 10 30 s - 9.85 10.62 10.60 - 10.63 9.4 4.8 7.8 93.8 
            

Random 2 10 r - 2.00 2.03 2.02 – 2.05 18.5 18.1 1.7 93.9 

Random 2 10 s - 2.00 2.24 2.23 – 2.25 17.9 11.8 12.1 100.0 

Random 2 20 r - 2.00 1.99 1.98 – 2.01 13.2 13.3 -0.3 93.3 

Random 2 20 s - 2.00 2.23 2.23 – 2.24 16.6 10.6 11.7 95.3 

Random 2 30 r - 2.00 1.98 1.97 – 1.99 10.6 10.7 -0.8 94.7 

Random 2 30 s - 2.00 2.25 2.25 – 2.25 14.9 7.1 12.5 93.1 
            

Random 6 10 r - 6.00 5.94 5.91 – 5.97 11.3 11.3 -1.0 93.6 

Random 6 10 s - 6.00 5.94 9.92 – 5.95 11.0 11.1 -1.0 92.6 

Random 6 20 r - 6.00 5.95 5.93 – 5.98 8.1 8.2 -0.8 92.8 

Random 6 20 s - 6.00 5.88 5.87 – 5.89 7.3 7.2 -2.0 100.0 

Random 6 30 r - 6.00 5.95 5.93 – 5.96 6.6 6.5 -0.9 93.7 

Random 6 30 s - 6.00 5.89 5.88 – 5.89 4.4 4.1 -1.9 100.0 
            

Random 10 10 r - 10.00 9.93 9.89 – 9.97 9.5 9.5 -0.7 92.2 

Random 10 10 s - 10.00 9.82 9.81 – 9.82 3.7 3.3 -1.8 100.0 

Random 10 20 r - 10.00 9.96 9.94 – 9.99 6.4 6.4 -0.4 93.3 

Random 10 20 s - 10.00 9.71 9.70 – 9.72 5.0 4.2 -2.9 99.0 

Random 10 30 r - 10.00 9.98 9.96 – 10.00 5.1 5.1 -0.2 93.7 

Random 10 30 s - 10.00 9.87 9.86 – 9.87 2.7 2.4 -1.3 99.9 
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Distribution OD TD TL TN DT   D̂  95% CI(  D̂ ) RMSE CV(  D̂ ) Bias 95% CID 

Uniform 2 10 r - 2.00 2.01 2.00 – 2.02 11.4 11.4 0.5 99.0 

Uniform 2 10 s - 2.00 2.31 2.30 – 2.32 26.0 18.0 15.7 88.7 

Uniform 2 20 r - 2.00 2.01 2.00 – 2.02 7.8 7.7 0.5 98.8 

Uniform 2 20 s - 2.00 2.26 2.25 – 2.27 22.2 15.9 13.1 84.5 

Uniform 2 30 r - 2.00 2.01 2.00 – 2.02 7.0 7.0 0.5 98.8 

Uniform 2 30 s - 2.00 2.31 2.30 – 2.32 26.0 17.9 15.6 72.5 
            

Uniform 6 10 r - 6.04 5.99 5.97 – 6.00 6.6 6.6 -0.9 99.0 

Uniform 6 10 s - 6.04 5.68 5.66 – 5.69 9.8 8.2 -6.0 98.2 

Uniform 6 20 r - 6.04 6.02 6.01 – 6.03 3.9 3.9 -0.4 99.2 

Uniform 6 20 s - 6.04 5.64 5.64 – 5.65 8.0 5.0 -6.5 95.2 

Uniform 6 30 r - 6.04 6.02 6.01 – 6.03 3.6 3.6 -0.3 98.8 

Uniform 6 30 s - 6.04 5.63 5.62 – 5.63 8.0 4.5 -6.8 91.0 
            

Uniform 10 10 r - 10.01 10.09 10.04 – 10.13 9.8 9.7 0.7 95.4 

Uniform 10 10 s - 10.01 10.45 10.43 – 10.48 10.4 9.0 4.4 89.5 

Uniform 10 20 r - 10.01 10.08 10.05 – 10.10 6.2 6.1 0.6 96.1 

Uniform 10 20 s - 10.01 10.82 10.80 – 10.84 12.4 8.7 8.1 83.4 

Uniform 10 30 r - 10.01 10.07 10.05 – 10.09 5.1 5.1 0.6 96.9 

Uniform 10 30 s - 10.01 10.54 10.52 – 10.57 10.7 8.8 5.3 84.4 
            

Clumped 2 10 - f 2.05 2.31 2.29 – 2.34 37.7 31.3 13.0 89.2 

Clumped 2 10 - s 2.05 2.85 2.83 – 2.86 44.0 14.5 39.1 67.4 

Clumped 2 20 - f 2.05 2.25 2.24 – 2.26 18.8 14.3 10.2 89.7 

Clumped 2 20 - s 2.05 2.31 2.30 – 2.32 20.2 13.8 12.9 90.5 

Clumped 2 30 - f 2.05 2.24 2.23 – 2.25 17.5 13.5 9.4 92.2 

Clumped 2 30 - s 2.05 2.25 2.24 – 2.26 17.0 12.5 10.0 92.5 
            

Clumped 6 10 - f 5.90 7.06 7.00 – 7.12 39.5 28.6 19.7 68.2 

Clumped 6 10 - s 5.90 7.27 7.24 – 7.31 29.8 15.1 23.3 55.1 

Clumped 6 20 - f 5.90 6.25 6.23 – 6.27 13.0 10.9 5.9 92.7 

Clumped 6 20 - s 5.90 6.47 6.44 – 6.49 16.6 12.3 9.7 84.5 

Clumped 6 30 - f 5.90 6.22 6.21 – 6.24 9.4 7.2 5.5 93.4 

Clumped 6 30 - s 5.90 6.29 6.27 – 6.30 10.9 8.1 6.6 91.0 
            

Clumped 10 10 - f 9.85 11.75 11.63 – 11.87 43.7 32.9 19.3 67.8 

Clumped 10 10 - s 9.85 12.34 12.27 – 12.40 33.3 17.3 25.2 43.2 

Clumped 10 20 - f 9.85 10.74 10.70 – 10.78 15.3 11.4 9.0 90.2 

Clumped 10 20 - s 9.85 10.83 10.80 – 10.87 16.0 11.3 10.0 92.1 

Clumped 10 30 - f 9.85 10.64 10.62 – 10.67 11.3 7.4 8.0 86.6 

Clumped 10 30 - s 9.85 10.70 10.67 – 10.72 12.0 7.7 8.6 91.5 
            

Random 2 10 - f 2.00 2.13 2.12 – 2.14 15.6 13.3 6.5197 98.5 

Random 2 10 - s 2.00 2.25 2.24 – 2.26 20.2 14.2 12.4 98.4 
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(Table A) Contd….. 

Distribution OD TD TL TN DT   D̂  95% CI(  D̂ ) RMSE CV(  D̂ ) Bias 95% CID 

Random 2 20 - f 2.00 2.25 2.24 – 2.26 18.8 12.6 12.4 92.9 

Random 2 20 - s 2.00 2.10 2.09 – 2.11 12.1 10.5 5.0 96.8 

Random 2 30 - f 2.00 2.21 2.21 – 2.22 15.2 9.8 10.7 91.7 

Random 2 30 - s 2.00 2.15 2.15 – 2.16 12.6 9.2 7.7 95.3 
            

Random 6 10 - f 6.00 5.83 5.82 – 5.85 9.3 9.2 -2.8 98.3 

Random 6 10 - s 6.00 6.04 6.02 – 6.07 12.6 12.5 0.7 87.4 

Random 6 20 - f 6.00 5.91 5.90 – 5.92 7.1 7.0 -1.5 98.2 

Random 6 20 - s 6.00 5.89 5.88 – 5.91 7.9 7.8 -1.8 98.1 

Random 6 30 - f 6.00 5.89 5.88 – 5.90 5.4 5.2 -1.8 98.5 

Random 6 30 - s 6.00 5.91 5.90 – 5.92 4.7 4.5 -1.5 98.3 
            

Random 10 10 - f 10.00 9.77 9.75 – 9.79 6.3 6.0 -2.3 98.0 

Random 10 10 - s 10.00 9.92 9.90 – 9.93 5.0 5.0 -0.8 98.1 

Random 10 20 - f 10.00 9.88 9.87 – 9.90 5.1 5.0 -1.2 98.0 

Random 10 20 - s 10.00 9.66 9.65 – 9.68 5.7 4.7 -3.4 97.1 

Random 10 30 - f 10.00 9.94 9.93 – 9.95 3.3 3.3 -0.6 98.7 

Random 10 30 - s 10.00 9.85 9.84 – 9.86 3.7 3.4 -1.5 98.0 
            

Uniform 2 10 - f 2.00 2.34 2.32 – 2.35 28.9 20.0 16.9 82.8 

Uniform 2 10 - s 2.00 2.14 2.13 – 2.15 15.7 13.3 6.8 99.8 

Uniform 2 20 - f 2.00 2.23 2.22 – 2.24 21.6 16.5 11.4 86.5 

Uniform 2 20 - s 2.00 2.17 2.16 – 2.18 17.3 13.9 8.5 89.7 

Uniform 2 30 - f 2.00 2.26 2.25 – 2.27 24.4 18.3 13.0 76.7 

Uniform 2 30 - s 2.00 2.21 2.20 – 2.23 21.0 16.3 10.7 81.5 
            

Uniform 6 10 - f 6.04 5.70 5.69 – 5.72 9.2 7.8 -5.6 97.8 

Uniform 6 10 - s 6.04 5.80 5.79 – 5.82 8.9 8.3 -3.9 98.9 

Uniform 6 20 - f 6.04 5.73 5.72 – 5.74 7.5 5.8 -5.1 95.6 

Uniform 6 20 - s 6.04 5.75 5.74 – 5.75 6.9 5.2 -4.8 96.7 

Uniform 6 30 - f 6.04 5.70 5.69 – 5.71 7.6 5.4 -5.7 92.4 

Uniform 6 30 - s 6.04 5.75 5.74 – 5.76 6.7 5.1 -4.7 93.5 
            

Uniform 10 10 - f 10.01 10.20 10.17 – 10.27 11.4 11.0 1.9 83.1 

Uniform 10 10 - s 10.01 10.52 10.50 – 10.54 9.0 7.0 5.1 98.9 

Uniform 10 20 - f 10.01 10.70 10.67 – 10.73 11.9 9.1 6.9 84.1 

Uniform 10 20 - s 10.01 10.57 10.54 – 10.60 10.3 8.2 5.6 89.1 

Uniform 10 30 - f 10.01 10.31 10.28 – 10.34 9.3 8.6 3.0 86.8 

Uniform 10 30 - s 10.01 10.54 10.51 – 10.57 9.9 8.0 5.3 88.2 
            

Clumped 2 10 r f 2.05 2.34 2.30 – 2.39 35.5 28.3 14.5 80.4 

Clumped 2 10 r s 2.05 2.67 2.64 – 2.71 45.1 25.6 30.3 69.8 

Clumped 2 10 s f 2.05 2.30 2.28 – 2.33 38.3 32.3 12.5 92.1 

Clumped 2 10 s s 2.05 2.91 2.90 – 2.92 43.7 8.4 42.0 66.6 
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Distribution OD TD TL TN DT   D̂  95% CI(  D̂ ) RMSE CV(  D̂ ) Bias 95% CID 

Clumped 2 20 r f 2.05 2.32 2.29 – 2.35 25.9 19.6 13.3 80.8 

Clumped 2 20 r s 2.05 2.51 2.48 – 2.54 35.2 18.7 22.6 66.9 

Clumped 2 20 s f 2.05 2.23 2.22 – 2.24 15.7 11.7 9.1 92.7 

Clumped 2 20 s s 2.05 2.24 2.24 – 2.25 14.2 9.5 9.6 98.3 

Clumped 2 30 r f 2.05 2.25 2.23 – 2.27 19.5 15.2 10.0 83.3 

Clumped 2 30 r s 2.05 2.35 2.32 – 2.37 22.4 14.8 14.6 76.2 

Clumped 2 30 s f 2.05 2.24 2.23 – 2.25 16.8 12.8 9.3 95.2 

Clumped 2 30 s s 2.05 2.22 2.21 – 2.23 14.7 11.1 8.4 97.9 
            

Clumped 6 10 r f 5.90 6.53 6.43 – 6.61 28.3 23.6 10.7 72.6 

Clumped 6 10 r s 5.90 6.62 6.54 – 6.71 26.6 21.0 12.3 74.1 

Clumped 6 10 s f 5.90 7.24 7.16 – 7.31 42.5 29.3 22.7 66.7 

Clumped 6 10 s s 5.90 7.49 7.46 – 7.52 30.8 11.7 27.0 48.7 

Clumped 6 20 r f 5.90 6.55 6.49 – 6.62 20.9 15.9 11.1 70.9 

Clumped 6 20 r s 5.90 6.51 6.45 – 6.57 19.6 15.0 10.5 73.8 

Clumped 6 20 s f 5.90 6.14 6.13 – 6.16 9.0 7.7 4.2 100.0 

Clumped 6 20 s s 5.90 6.45 6.43 – 6.48 15.5 11.2 9.4 88.1 

Clumped 6 30 r f 5.90 6.47 6.42 – 6.51 16.0 11.6 9.7 74.3 

Clumped 6 30 r s 5.90 6.50 6.45 – 6.54 16.1 11.3 10.2 73.0 

Clumped 6 30 s f 5.90 6.14 6.13 – 6.15 5.8 3.9 4.2 99.8 

Clumped 6 30 s s 5.90 6.22 6.20 – 6.23 8.5 6.2 5.5 96.9 
            

Clumped 10 10 r f 9.85 10.82 10.64 – 11.00 31.3 27.0 9.9 71.2 

Clumped 10 10 r s 9.85 11.14 10.98 – 11.30 28.8 22.7 13.1 71.4 

Clumped 10 10 s f 9.85 12.05 11.91 – 12.20 47.1 33.8 22.4 66.7 

Clumped 10 10 s s 9.85 12.74 12.67 – 12.80 34.7 14.3 29.3 33.7 

Clumped 10 20 r f 9.85 10.91 10.79 – 11.03 22.2 17.5 10.8 72.3 

Clumped 10 20 r s 9.85 11.06 10.95 – 11.18 22.4 16.7 12.3 68.6 

Clumped 10 20 s f 9.85 10.68 10.65 – 10.71 12.2 8.1 8.5 96.1 

Clumped 10 20 s s 9.85 10.76 10.73 – 10.79 13.1 8.6 9.2 100.0 

Clumped 10 30 r f 9.85 10.77 10.69 – 10.85 16.4 12.3 9.4 76.2 

Clumped 10 30 r s 9.85 10.89 10.81 – 10.97 17.1 12.2 10.6 73.1 

Clumped 10 30 s f 9.85 10.60 10.58 – 10.62 9.0 4.5 7.6 90.0 

Clumped 10 30 s s 9.85 10.64 10.62 – 10.65 9.7 5.1 8.0 97.6 
            

Random 2 10 r f 2.00 1.97 1.95 – 1.99 18.4 18.6 -1.4 94.1 

Random 2 10 r s 2.00 2.09 2.07 – 2.12 18.5 17.1 4.7 93.7 

Random 2 10 s f 2.00 2.18 2.18 – 2.19 14.5 10.3 9.2 100.0 

Random 2 10 s s 2.00 2.30 2.29 – 2.31 20.8 12.6 14.9 99.9 

Random 2 20 r f 2.00 1.98 1.96 – 2.00 13.1 13.2 -1.0 92.9 

Random 2 20 r s 2.00 2.01 1.99 – 2.02 13.4 13.3 0.4 93.7 

Random 2 20 s f 2.00 2.34 2.33 – 2.35 20.4 9.7 16.9 92.8 

Random 2 20 s s 2.00 2.13 2.12 – 2.14 11.7 9.1 6.5 97.8 

            



42    The Open Ecology Journal, 2012, Volume 5 Nomani et al. 

(Table A) Contd….. 

Distribution OD TD TL TN DT   D̂  95% CI(  D̂ ) RMSE CV(  D̂ ) Bias 95% CID 

Random 2 30 r f 2.00 1.99 1.98 – 2.00 10.8 10.8 -0.5 94.1 

Random 2 30 r s 2.00 1.98 1.96 – 1.99 10.4 10.5 -0.1 95.2 

Random 2 30 s f 2.00 2.29 2.28 – 2.29 16.4 6.9 14.4 90.8 

Random 2 30 s s 2.00 2.21 2.21 – 2.22 13.2 7.0 10.7 95.4 
            

Random 6 10 r f 6.00 5.90 5.85 – 5.94 11.9 11.9 -1.7 93.3 

Random 6 10 r s 6.00 5.98 5.94 – 6.02 10.7 10.7 -0.4 93.8 

Random 6 10 s f 6.00 5.81 5.79 – 5.83 8.3 7.9 -3.2 100.0 

Random 6 10 s s 6.00 6.06 6.04 – 6.09 13.2 13.1 1.1 85.2 

Random 6 20 r f 6.00 5.95 9.92 – 5.98 8.2 8.2 -0.9 93.0 

Random 6 20 r s 6.00 5.96 5.93 – 5.99 8.1 8.1 -0.6 92.6 

Random 6 20 s f 6.00 5.90 5.88 – 5.91 6.7 6.6 -1.7 100.0 

Random 6 20 s s 6.00 5.87 5.85 – 5.89 7.9 7.7 -2.2 100.0 

Random 6 30 r f 6.00 5.96 5.94 – 5.99 6.6 6.7 -0.7 94.1 

Random 6 30 r s 6.00 5.93 5.91 – 5.95 6.5 6.4 -1.2 93.3 

Random 6 30 s f 6.00 5.87 5.86 – 5.88 4.9 4.5 -2.1 100.0 

Random 6 30 s s 6.00 5.90 5.90 – 5.91 3.9 3.6 1.6 100.0 
            

Random 10 10 r f 10.00 9.88 9.82 – 9.94 10.0 10.1 -1.2 91.9 

Random 10 10 r s 10.00 9.98 9.92 – 10.03 8.9 8.9 -0.2 92.4 

Random 10 10 s f 10.00 9.73 9.72 – 9.75 4.5 3.7 -2.7 100.0 

Random 10 10 s s 10.00 9.89 9.89 – 9.91 2.7 2.6 -1.0 100.0 

Random 10 20 r f 10.00 9.99 9.95 – 10.03 6.5 6.5 -0.1 93.4 

Random 10 20 r s 10.00 9.94 9.90 – 9.98 6.2 6.3 -0.6 93.2 

Random 10 20 s f 10.00 9.85 9.83 – 9.86 4.5 4.3 -1.5 99.6 

Random 10 20 s s 10.00 9.57 9.56 – 9.58 5.5 3.5 -4.3 98.4 

Random 10 30 r f 10.00 10.01 9.97 - 10.04 5.1 5.1 0.1 94.8 

Random 10 30 r s 10.00 9.96 9.93 – 9.99 5.2 5.2 -0.4 92.6 

Random 10 30 s f 10.00 9.92 9.91 – 9.93 2.4 2.3 -0.8 100.0 

Random 10 30 s s 10.00 9.82 9.81 – 9.82 3.0 2.4 -1.8 99.7 
            

Uniform 2 10 r f 2.00 1.99 1.97 – 2.00 11.4 11.4 -0.6 98.9 

Uniform 2 10 r s 2.00 2.03 2.02 – 2.05 11.5 11.2 1.6 99.1 

Uniform 2 10 s f 2.00 2.46 2.44 – 2.47 32.7 19.1 22.8 77.5 

Uniform 2 10 s s 2.00 2.17 2.16 – 2.18 16.9 13.4 8.5 100.0 

Uniform 2 20 r f 2.00 2.01 2.00 – 2.02 8.0 8.0 0.3 98.6 

Uniform 2 20 r s 2.00 2.01 2.01 – 2.02 7.6 7.5 0.7 99.0 

Uniform 2 20 s f 2.00 2.30 2.29 – 2.31 24.6 16.9 15.1 82.4 

Uniform 2 20 s s 2.00 2.22 2.21 – 2.23 19.5 14.5 11.1 86.6 

Uniform 2 30 r f 2.00 2.00 1.99 – 2.01 7.1 7.1 0.2 98.7 

Uniform 2 30 r s 2.00 2.02 2.01 – 2.03 6.9 6.8 0.9 98.9 

Uniform 2 30 s f 2.00 2.34 2.33 – 2.36 27.9 18.7 17.2 69.4 

Uniform 2 30 s s 2.00 2.28 2.27 – 2.29 23.3 17.0 14.0 75.6 
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Distribution OD TD TL TN DT   D̂  95% CI(  D̂ ) RMSE CV(  D̂ ) Bias 95% CID 

Uniform 6 10 r f 6.04 5.96 5.93 – 5.99 7.8 7.8 -1.3 98.6 

Uniform 6 10 r s 6.04 6.01 6.00 – 6.03 4.9 4.9 -0.4 99.3 

Uniform 6 10 s f 6.04 5.62 5.60 – 5.63 9.6 7.1 -7.0 97.5 

Uniform 6 10 s s 6.04 5.73 5.72 – 5.75 9.9 8.9 -5.0 98.8 

Uniform 6 20 r f 6.04 6.01 6.00 – 6.03 4.4 4.4 -0.4 98.9 

Uniform 6 20 r s 6.04 6.02 6.01 – 6.03 3.4 3.4 -0.3 99.4 

Uniform 6 20 s f 6.04 5.63 5.62 – 5.64 8.3 5.3 -6.7 94.5 

Uniform 6 20 s s 6.04 5.65 5.65 – 5.66 7.7 4.7 -6.3 95.8 

Uniform 6 30 r f 6.04 6.02 6.00 – 6.03 4.1 4.1 -0.3 98.2 

Uniform 6 30 r s 6.04 6.02 6.01 – 6.03 3.0 3.0 -0.2 99.3 

Uniform 6 30 s f 6.04 5.59 5.58 – 5.60 8.4 4.3 -7.4 90.5 

Uniform 6 30 s s 6.04 5.66 5.65 – 5.67 7.6 4.6 -6.2 91.5 
            

Uniform 10 10 r f 10.01 10.01 9.94 – 10.07 10.9 10.9 -0.1 95.3 

Uniform 10 10 r s 10.01 10.17 10.11 – 10.22 8.6 8.3 1.5 95.4 

Uniform 10 10 s f 10.01 10.27 10.23 – 10.31 11.5 10.9 2.5 79.0 

Uniform 10 10 s s 10.01 10.64 10.62 – 10.66 9.1 6.2 6.3 100.0 

Uniform 10 20 r f 10.01 10.05 10.01 – 10.09 6.3 6.3 0.4 97.2 

Uniform 10 20 r s 10.01 10.10 10.07 – 10.14 6.0 5.9 0.9 95.0 

Uniform 10 20 s f 10.01 10.92 10.88 – 10.95 13.3 9.0 9.0 79.7 

Uniform 10 20 s s 10.01 10.73 10.69 – 10.76 11.4 8.3 7.1 87.1 

Uniform 10 30 r f 10.01 10.05 10.01 – 10.08 4.9 4.8 0.3 98.2 

Uniform 10 30 r s 10.01 10.10 10.06 – 10.13 5.4 5.3 0.8 95.6 

Uniform 10 30 s f 10.01 10.40 10.37 – 10.43 10.4 9.3 3.9 83.0 

Uniform 10 30 s s 10.01 10.69 10.66 – 10.72 11.0 8.2 6.7 85.7 
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