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Introduction

Life history theory posits that a simultaneous 
optimization of multiple fitness traits is con-
strained by life history trade-offs, such that an 
increase in fitness due to a beneficial change in 
one trait is counteracted by a decrease in fitness 
due to a detrimental change in another trait (Wil-
liams 1966, Partridge and Harvey 1985, Reznick 
1985, Stearns 1989, Roff and Fairbairn 2007). One 
type of trade-off that features prominently in life 
history theory is the cost of reproduction, a nega-
tive trade-off between current reproduction and 
survival and/or current reproduction and future 

reproduction (Williams 1966, Reznick 1985, Stea-
rns 1989, 1992, Roff 2002). Virtually all optimality 
models of life history evolution assume costs of 
reproduction (Stearns 1992, Roff 2002), and em-
pirical studies have shown that such costs do 
exist in many taxa, including plants (Law 1979, 
Primack and Hall 1990, Obeso 2002), insects 
(Fowler and Partridge 1989, Ellers 1996, Prowse 
and Partridge 1997, Flatt 2011), fish (Reznick 
1983, Roff 1984, Lester et al. 2004), reptiles (Miles 
et  al. 2000, Rivalan et  al. 2005), birds (Dijkstra 
et al. 1990, Nilsson and Svensson 1996, Tettaman-
ti et al. 2012), and mammals (Clutton-Brock et al. 
1983, Bercovitch and Berard 1993, Festa-Bianchet 
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et  al. 1998, Fisher and Blomberg 2011, Desprez 
et al. 2014).

Most empirical studies of the cost of reproduc-
tion in vertebrates have been short-term studies 
focusing on the trade-off between reproduction 
in one breeding season and survival/reproduc-
tion in the next or next few seasons (Nilsson and 
Svensson 1996, Miles et  al. 2000, Koivula et  al. 
2003, Hanssen et al. 2005, Cox et al. 2010, Hamel 
et al. 2010). Fewer studies have examined costs of 
reproduction using lifetime, composite measures 
of fitness (but see McGraw and Caswell 1996, Oli 
et al. 2002, Oli and Armitage 2003, Kruger 2005, 
Hadley et al. 2007, Descamps et al. 2009). Rarity 
of studies examining the costs of reproduction 
using lifetime fitness measures is due primari-
ly to the fact that such studies require survival 
and reproductive histories of individuals during 
their lifetimes; these studies are generally time-
consuming and expensive (Clutton-Brock and 
Sheldon 2010).

The cost of reproduction can occur within a 
generation (intra-generational costs or trade-
offs), but they can also transcend generations 
(inter-geneational costs or trade-offs; Stearns 1989, 
1992). However, studies of inter-generational 
costs of reproduction have been rare, with most 
work focusing on experimental manipulation of 
litter/clutch size or environment of the mother to 
examine effects on offspring survival or reproduc-
tion (Nur 1984, Dijkstra et al. 1990, Hare and Mu-
rie 1992, Koivula et al. 2003, Hanssen et al. 2005, 
Plaistow et al. 2006; also see Morris 1986), or field 
studies comparing parental survival or reproduc-
tion in one season to offspring survival the next 
(or next few) seasons (Hamel et al. 2010). Rarer 
still are empirical studies of inter-generational 
costs using lifetime fitness measures.

Here, we examine intra- and inter-generational 
costs of reproduction in golden-mantled ground 
squirrels (Callospermophilus lateralis; hereafter, 
GMGS) using lifetime fitness measures and 
components thereof. Costs of reproduction are 
thought to be particularly high in female mam-
mals because of the energy and nutrient require-
ments and physical changes that an individual 
must undergo due to pregnancy and lactation 
(Speakman 2008). In particular, age of first repro-
duction is thought to be an important life history 
trait, with substantial intra- and inter-generational 
fitness costs (Cole 1954, Stearns 1992, Lindstrom 

1999). Thus, we examined whether or to what 
extent age of first reproduction influences fitness 
(and its components) both within and between 
generations. Specifically, we expected that early 
age of first reproduction would: (1) reduce lon-
gevity, reproductive lifespan, average litter size, 
lifetime number of reproductive events, and 
lifetime measures of fitness within a generation, 
and (2) reduce daughters’ probability of surviv-
al to maturity, and lifetime fitness measures and 
components thereof. Our study system was ideal 
for testing the intra- vs. inter-generational costs 
of reproduction because age of first reproduction 
varies widely in GMGS, and also because we had 
complete survival and reproductive information 
on 416 females over a 24-year study period.

Methods

Study area and species
We studied GMGS at the Rocky Mountain 

Biological Laboratory (RMBL) in the East River 
Valley, Gunnison County, Colorado, USA 
(38°  58′N, 106°  59′W, elevation 2890  m). The 
study area is a 13-ha subalpine meadow, in-
terspersed with spruce (Picea spp.) groves and 
aspen (Populus tremuloides) woodlands. The 
meadow is bordered on two sides by water, 
the East River to the west and Copper Creek 
to the south, which form barriers for dispersal. 
The other two sides of the meadow (north and 
east) are aspen woodlands, which are not in-
habited by GMGS. The nearest population of 
GMGS outside of the study area is about 250 m 
to the east, but dispersal events typically in-
volve moves of less than 250  m, though they 
can range more than 1000  m (Jesmer et  al. 
2011).

Golden-mantled ground squirrels prefer open 
habitats such as meadows and rocky slopes close 
to grasslands, and they occur along a broad el-
evational gradient (~1000–4000  m;Bartels and 
Thompson 1993, Shick et al. 2006). The GMGS is 
an omnivore (Bartels and Thompson 1993), and 
at RMBL they mostly forage on herbaceous veg-
etation such as forbs and grasses. GMGS are an 
asocial diurnal species, which hibernate during 
the winter because of cold temperatures and food 
shortages, with entrance and emergence times 
from hibernation dependent on snowfall and al-
titude (Ferron 1985, Bartels and Thompson 1993). 
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At RMBL, they usually emerge from hibernation 
in May, and reenter hibernation in late August 
or early September. Females breed after emer-
gence from hibernation, with their litters emerg-
ing from their natal burrow typically in late June 
to mid-July. After emerging from hibernation, 
the squirrels quickly gain weight, and store fat 
before the next winter (Phillips 1984). Popula-
tion size fluctuates substantially over time, as do 
the demographic parameters (Kneip et al. 2011, 
Hostetler et  al. 2012). Their main predators at 
RMBL were red fox (Vulpes vulpes), long-tailed 
weasel (Mustela frenata), and short-tailed weasel 
(Mustela erminea).

Field methods
We censused the GMGS population annually 

for 24 consecutive years (1990–2014) by trapping 
with Tomahawk live traps (Model 201) during 
late May and early June until all squirrels were 
captured and identified. Each squirrel received 
numbered ear tags for permanent identification 
and a unique dye mark to the dorsal pelage 
for visual identification at a distance. Survival 
was based on presence or absence in the annual 
census. Reproduction by adult females was 
suggested by swollen nipples early in the active 
season, and then confirmed by emergence of 
a litter from the mother’s burrow. Pups in each 
litter were trapped, sexed, and ear-tagged upon 
emergence.

A total of 1301 GMGS were trapped during 
this study period, of which 416 were females 
with known lifetime reproductive performance 
and survival. The rest of the trapped GMGS were 
either males, or transient individuals that passed 
through the study area but did not become 
resident.

Life history traits and measures of fitness
We measured the following life history traits: 

(1) age of first reproduction (α), the earliest 
age a female successfully weaned a litter, (2) 
age of last reproduction (ω), the latest age a 
female successfully weaned a litter, (3) longevity 
or lifespan (β), the number of years a female 
was alive, (4) reproductive lifespan (βR), the 
number of years between the age of first and 
last reproduction, (5) lifetime number of repro-
ductive events (RE), the number of times a 
female successfully weaned a litter during her 

lifetime, (6) average litter size (LS), the average 
size of successfully weaned litters throughout 
a female’s lifetime, (7) litter size at weaning, 
the size of litter an individual was born into 
when it first emerged from the natal burrow, 
and (8) litter order, the number corresponding 
to the position of the litter an individual was 
born into in regards to all litters of the mother. 
We used the age at which a female successfully 
weans a litter as a measure of age of first re-
production. Age of first mating or first oestrous 
cycle are other candidates for the age of first 
reproduction; however, these events would not 
contribute to individual fitness unless they lead 
to weaned offspring.

For each female, we quantified fitness using 
two methods. The first, lifetime reproductive 
success (LRS; Clutton-Brock 1988, Newton 1989), 
is simply the total number of offspring that a fe-
male weaned over her lifetime. The second fit-
ness measure we used was the individual fitness 
(λ), calculated using the matrix method (Mc-
Graw and Caswell 1996, Oli and Armitage 2003). 
We constructed a population projection matrix 
Ai for each female GMGS with one-half times the 
litter size as an estimate of age-specific fertility 
rate (the first row of the matrix) until reproduc-
tion stopped at age ω, and survival probability 
of 1.0 along the lower diagonal until the female 
died. The individual fitness, λ, was then calcu-
lated as the dominant eigenvalue of the matrix. 
This fitness measure takes into account both the 
timing and the amount of reproduction, whereas 
LRS only considers the number of offspring (Mc-
Graw and Caswell 1996, Oli and Armitage 2003). 
The appropriateness of each fitness measure has 
been debated (Brommer et al. 2002), so both mea-
sures were included in the present study.

Statistical analysis
Intra-generational costs of reproduction

We tested for intra-generational costs of 
reproduction by examining the relationship 
between a female’s age of first reproduction 
(α) and lifetime measures of fitness (LRS and 
λ) and their components (β, βR, RE, LS). All fe-
male squirrels that reproduced at least once with 
known age of first reproduction were included 
in the analysis (n = 57; Fig. 1). Because β and RE 
represent discrete count data, we modeled the 
relationship between α and these traits using 
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Poisson regression (i.e., generalized linear mod-
el with Poisson distribution; Crawley 2007). The 
relationships between α and LRS and α and βR 
were modeled using negative binomial regres-
sion (i.e., generalized linear model with nega-
tive binomial distribution) due to poor fit of the 
Poisson model attributable to overdispersion. 
We modeled the relationship between α and 
LS and log-transformed λ using ordinary least 
square regression (i.e., generalized linear model 
with Gaussian distribution). We tested for non-
linearity in the aforementioned relationship by 
including a quadratic term; a model including 
quadratic term was favored over a linear mod-
el only for the relationship between α and log-
transformed λ. 

Inter-generational costs of reproduction
We examined inter-generational costs of 

reproduction by examining the relationship 
between mother’s age of first reproduction and 
their daughter’s lifetime measures of fitness 
and their components. The probability that a 
daughter survives to wean at least one litter 
was modeled using logistic regression (i.e., 
generalized linear model with binomial distri-
bution). The relationship between mother’s α 
and daughter’s fitness and its components were 
modeled using the same distributions as spec-
ified above for intra-generational trade-offs. 
These analyses were run using all mother and 
daughter pairs, when the daughter weaned at 
least one litter during her lifetime and had 

known α (n  =  29). Lastly, we modeled the 
relationship between daughters’ fitness (LRS 
and λ), and litter order and litter size they 
were born into using negative binomial 
regression and log normal regression, 
respectively.

All statistical analyses were performed using R 
version 3.1.1 (R Development Core Team 2008).

Results

Of the 416 female GMGS for which we had 
complete lifetime survival and reproductive 
data, 57 (14%) successfully weaned at least one 
litter during their lifetime. The majority (56%) 
of the squirrels successfully weaned a litter 
during their first year, with the latest age of 
first reproduction at 5  years of age (Fig.  1). 
The number of reproductive events ranged from 
1 to 7, but most squirrels (58%) weaned only 
one litter during their lifetime. Lifetime mean 
litter size ranged from 1 to 7 individuals, lifespan 
ranged from 1 to 9 yrs, and reproductive lifespan 
ranged from 0 to 6  yrs. Measures of fitness 
also varied substantially, with LRS ranging from 
1 to 37, and λ from 0.707 to 4.781 (Table  1).

Intra-generational costs of reproduction
Female GMGS who delayed age of first 

reproduction lived longer (slope parameter, 
β  ±  SE  =  0.243  ±  0.081, P  =  0.003) but did not 
have longer reproductive lifespans (β  ±  SE  = 
0.100  ±  0.267, P  =  0.709). They did not have a 
higher number of reproductive events during 
their lifetimes (β ± SE = 0.399 ± 0.131, P = 0.761), 

Fig.  1. Frequency distribution of the age of first 
reproduction (α) in female golden-mantled ground 
squirrels in Rocky Mountain Biological Laboratory, 
Colorado, USA.

Table  1. Summary statistics for fitness and its 
components.

Life history 
trait/fitness 

measure Mean ± SE Minimum Maximum

α 1.544 ± 0.100 1 5
β 3.211 ± 0.195 1 9
βR 0.754 ± 0.159 0 6
RE 1.702 ± 0.150 1 7
LS 4.792 ± 0.166 1 7
LRS 8.579 ± 0.905 1 37
λ 2.213 ± 0.113 0.71 4.8

Note: α = age of first reproduction; β = longevity or lifespan; 
βR = reproductive lifespan; RE = lifetime number of reproduc-
tive events; LS = mean litter size; LRS = lifetime reproductive 
success; and λ = individual fitness.
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nor did they have larger litters overall 
(β  ±  SE  =  0.236  ±  0.220, P  =  0.289; Fig.  2). 
Delaying the age of first reproduction did not 
affect LRS (β  ±  SE  =  0.070  ±  0.119, P  =  0.553); 
however, it significantly reduced λ (β1  ±  SE  = 
−0.631 ± 0.178, P = 0.0008, β2 ± SE = 0.081 ± 0.037, 
P  =  0.033; Fig.  2). 

Inter-generational costs of reproduction
GMGS females whose mothers began repro-

duction at a later age had a marginally higher 
probability of surviving to reproduce at least 
once (β ± SE = 0.3288 ± 0.1869, P = 0.079; Fig. 3). 
Mother’s age of first reproduction did not affect 
daughter’s age of last reproduction (β  ±  SE  = 
−0.048  ±  0.108, P  =  0.657), longevity 
(β  ±  SE  =  −0.012  ±  0.087, P  =  0.891), or lifetime 
number of reproductive events (β  ±  SE  = 
−0.005  ±  0.119, P  =  0.964). Daughters born to 
females who delayed age of first reproduction 
generally produced smaller litters (β  ±  SE  = 
−0.304  ±  0.171, P  =  0.087; Fig.  4). Mothers’ age 
of first reproduction generally negatively 

influenced their daughters’ LRS and λ (LRS: 
β  ±  SE  =  −0.069  ±  0.089, P  =  0.440; λ: 
β  ±  SE  =  −0.053  ±  0.062, P  =  0.407; Fig.  4). 

Fig. 2. The relationship between age of first reproduction (α) and (a) longevity (β), (b) reproductive lifespan 
(βR), (c) number of reproductive events (RE), (d) mean litter size (LS), (e) lifetime reproductive success (LRS), or 
(f) individual fitness (λ).

Fig.  3. The relationship between mothers’ age of 
first reproduction (α) and the proportion of their 
daughters that successfully weaned at least one litter.
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Daughters’ LRS and λ were negatively af-
fected by litter order in which they were born; 
fitness of female GMGS born into moth-
ers’ earlier litters was higher than those for 
the later litters (LRS: β  ±  SE  =  −0.216  ±  0.101, 
P = 0.032; λ: β ± SE = −0.137 ± 0.058, P = 0.025). 
Finally, daughters born into smaller litters had 
higher fitness than those born into larger lit-
ters (LRS: β  ±  SE  =  −0.183  ±  0.081, P  =  0.025; λ: 
β ± SE = −0.168 ± 0.055, P = 0.005; Fig. 5). 

Discussion

Virtually all optimality models of life history 
evolution assume that reproduction is costly 
(Stearns 1989, 1992, Roff 2002). Among various 
reproductive investments, age of first reproduc-
tion is particularly important because it can 
affect survival, future reproduction, and ulti-
mately, individual fitness (Cole 1954, Stearns 
1992, Lindstrom 1999). Age of first reproduction 
of mothers can potentially influence life history 
traits and fitness of the offspring as well. For 

example, offspring born to young, inexperienced 
females who may not have fully grown to adult 
size are less likely to survive to reproductive 
age and may thus have lower fitness compared 
to those born to older, more experienced moth-
ers (Stearns 1989, 1992). Thus, costs of earlier 
age of first reproduction can be expressed both 
within as well as between generations. But, 
who pays these costs? Is it the individuals, 
their offspring, or perhaps both?

Female GMGS who delayed age of first repro-
duction lived longer, but they did not necessar-
ily experience a longer reproductive lifespan. 
However, contrary to our expectations, females 
that delayed age of first reproduction did not 
reproduce more frequently or produce larger 
litters. Although these results are correlative in 
nature and do not necessarily imply causation, it 
appears that benefits of earlier age of first repro-
duction far exceed any potential costs in GMGS. 
Similar results have been reported for North 
American red squirrels (Tamiasciurus hudsonicus; 
Descamps et  al. 2009), Soay sheep (Ovis aries; 

Fig.  4. The relationship between mother’s age of first reproduction (α) and daughter’s (a) age of last 
reproduction (ω), (b) longevity (β), (c) number of reproductive events (RE), (d) mean litter size (LS), (e) lifetime 
reproductive success (LRS), or (f) individual fitness (λ).
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Clutton-Brock and Pemberton 2004), Weddell 
seals (Leptonychotes weddellii; Hadley et al. 2007), 
brown antechinuses (Antechinus stuartii; Fisher 
and Blomberg 2011), and brown anoles (Anolis 
sagrei; Cox et al. 2010).

Phenotypic correlational studies have been the 
primary focus of life history trade-offs in verte-
brates (Stearns 1992, Roff 2002). However, what 
ultimately matters is how reproductive invest-
ments affect integrative, lifetime measures of in-
dividual fitness (McGraw and Caswell 1996, Oli 
and Armitage 2003). This is because natural se-
lection acts on fitness, and favors a combination 
of life history traits that maximize fitness, subject 
to appropriate constraints and trade-offs (Bell 
1980, Reznick 1985, Stearns 1989). Thus, we also 
examined whether or to what extent age of first 
reproduction influenced two lifetime measures of 
fitness: λ and LRS (Clutton-Brock 1988, Newton 
1989, McGraw and Caswell 1996). Interestingly, 
fitness costs of earlier age of first reproduction 
in GMGS depended on the fitness measures con-
sidered (see Brommer et al. 2002 for discussion 
of various fitness measures): earlier age of first 
reproduction had no effect on LRS, but it signifi-
cantly increased λ. Similar results were reported 
by many studies that used both LRS and λ as 
fitness measures (e.g., European sparrowhawks 
(Accipiter nisus) and blue tits (Cyanistes caerule-

us): McGraw and Caswell 1996, Ural owls (Strix 
uralensis): Brommer et al. 1998, wood ducks (Aix 
sponsa): Oli et  al. 2002, yellow-bellied marmots 
(Marmota flaviventris): Oli and Armitage 2003). 
Given these somewhat different results, what can 
one conclude regarding the costs of  early repro-
ductive maturity?

In the context of our study, λ is probably a bet-
ter measure of fitness than LRS because λ simul-
taneously considers timing as well as amount of 
reproduction, whereas LRS only considers the 
amount of reproduction (McGraw and Caswell 
1996, Oli and Armitage 2003). Arguably, timing 
of reproduction is an important component of 
fitness, because it substantially affects the rate at 
which one’s genes are represented in future gen-
erations; everything else being equal an individ-
ual or a genotype that begins reproduction earlier 
will have a higher fitness (Oli 2003). Furthermore, 
it is reasonable to expect that natural selection 
favors age of first reproduction that yields the 
highest fitness. Thus, if delaying age of first re-
production leads to reduction in fitness, one can 
predict that most individuals in the population 
should attempt to reproduce at the earliest pos-
sible age. Consistent with this expectation, a ma-
jority of GMGS started breeding during their first 
year of reproductive maturity. Similar results 
have been reported for wood ducks (Oli et  al. 

Fig. 5. The relationship between daughter’s fitness (LRS and λ) and litter order (a–b), or litter size (c–d).
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2002), yellow-bellied marmots (Oli and Armit-
age 2003), and Ural owls (Brommer et al. 1998). 
Nevertheless, several studies have concluded 
that delaying age of first breeding has little or no 
influence on fitness or its components. For ex-
ample, early age of first reproduction did not af-
fect survival of female rhesus macaques (Macaca 
mulatta; Bercovitch and Berard 1993), mountain 
goats (Oreamnos americanus; Hamel et  al. 2010), 
female bighorn sheep (Ovis canadensis; Berube 
et al. 1999), or wandering albatross (Diomedea ex-
ulans; Weimerskirch 1992). Why these conflicting 
results?

We suggest that costs of earlier age of first re-
production in mammalian species depend on 
the tempo of life history (Oli 2004) – the relative 
position of a species along the fast-slow continu-
um (Gaillard et al. 1989, Read and Harvey 1989, 
Promislow and Harvey 1990). Species that occu-
py the “fast” end of the continuum begin repro-
duction earlier in life, produce large litters, have 
short generation times and die young, whereas 
those occupying the “slow” end of the contin-
uum mature later, produce smaller litters, have 
long generation times and live longer (Gaillard 
et  al. 1989, Read and Harvey 1989, Promislow 
and Harvey 1990, Oli 2004). It has been proposed 
that fitness is highly sensitive to changes in re-
productive parameters, especially age of first re-
production, in species that occupy the fast end of 
the continuum (Oli and Dobson 2003, Oli 2004, 
Dobson and Oli 2008). In such species, delaying 
age of first reproduction would lead to substan-
tial reduction in fitness; costs of early reproduc-
tion in such species, if any, should be a reduction 
in survival but fitness benefits of earlier maturi-
ty should balance or exceed these costs. Conse-
quently, earlier age of first reproduction should 
be favored by natural selection. In contrast, fit-
ness is relatively insensitive to changes in age of 
first reproduction (and reproductive parameters 
generally) in species that occupy the slow end of 
the continuum. In such species, changes in age 
of first reproduction would have little effect on 
fitness; consequently, we expect little selection 
pressure on earlier maturity. Hence, we predict 
that earlier maturity should be favored in species 
at the fast end of the continuum, and that optimal 
age of first reproduction in such species should 
be the earliest possible age at which reproduction 
is possible, which should also be the most fre-

quent age of first reproduction. In contrast, we 
predict weaker selection pressure on the age of 
first reproduction in species with slow life histo-
ries, and consequently, little directional selection 
on this variable and a wide distribution of age 
of first reproduction. Because species at the slow 
end of the continuum are generally characterized 
by higher survival and lower reproductive rates, 
any cost of reproduction in such species is likely 
to be the survival cost.

To test this idea, we calculated the ratio of the 
magnitude of reproduction relative to the onset 
of reproduction (F/α and m/α ratios; F – fertility 
rate, α – age of first reproduction, m-average 
fecundity; Oli 2004, Oli and Dobson 2005). The 
m/α ratio for GMGS calculated based on data 
presented in Table  1 was 3.2, showing that this 
species occupies the fast end of the continuum, 
using Oli and Dobson’s (2003, 2005) criteria. 
Thus, one would expect to see a discernible cost 
of reproduction in this species. Similarly, ear-
ly reproduction was costly in terms of survival 
but there was little evidence for reproductive 
cost in North American red squirrels (m/α = 1.48) 
and Soay sheep (m/α  =  1) (Clutton-Brock and 
Pemberton 2004, Descamps et  al. 2006). A ma-
jority of yearlings attain reproductive maturity 
in both species, as expected for species occupy-
ing the fast end of the continuum. Rhesus ma-
caques (m/α = 0.09) fall onto the slow end of the 
continuum. As expected, early reproduction did 
not affect survival but negatively affected future 
reproduction, with the majority of macaques re-
producing for the first time at 4 years of age (Ber-
covitch and Berard 1993). Likewise, there was no 
evidence for the survival cost of early maturity in 
Mountain gorillas (Gorilla beringei; m/α ≈ 0.125), 
another species occupying the slow end of the 
continuum (Robbins et al. 2011). Lastly, the Wed-
dell seal (m/α  =  0.36) falls in the middle of the 
continuum. Early reproduction was costly in this 
species in terms of future reproductive poten-
tial (Hadley et al. 2007). As expected, age of first 
reproduction varied widely in this population 
from 4 to 14  years, with no evidence for direc-
tional selection on the age of first reproduction 
(Hadley et al. 2007).

We note that variation in individual quality 
(Cam et  al. 2004, Wilson and Nussey 2010) can 
potentially explain some of our results. Some 
individuals are inherently of higher quality than 
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the others; they begin reproducing earlier in life, 
reproduce more often and/or have a longer re-
productive lifespan, and thus have higher fitness 
than lower quality individuals. Variation in indi-
vidual quality could be based on the actual geno-
type of the individual, or due to the environment 
in which it was raised (Wilson and Nussey 2010). 
This can potentially lead to a positive correlation 
between age of first reproduction and fitness as 
well as other fitness traits, or between fitness of 
mothers and of their offspring.

GMGS females born to mothers with delayed 
age of reproduction had a higher probability 
of surviving to realize reproduction. However, 
among females who survived to successfully 
reproduce at least once, mothers’ age of first re-
production had no effect on fitness. These results 
suggest that the inter-generational cost of earlier 
maturity is survival of daughters to reproductive 
age. The fact that only 14% of GMGS females sur-
vive to realize reproduction and that the proba-
bility of surviving to reproductive age is strongly 
influenced by mothers’ age of first reproduction 
point to the possibility that daughters pay for 
mothers’ early age of first reproduction. Also, 
females born into smaller litters generally had 
higher fitness compared to those born into larger 
litters. These results suggest trade-offs between 
number and quality of offspring (Stearns 1992), 
although some of these results may be influenced 
by shared phenotypes or environments, as dis-
cussed previously. Experimental studies manip-
ulating clutch or litter size have found similar 
trade-offs between the number and quality of off-
spring (e.g., Tree swallow (Tachycineta bicolor): De 
Steven 1980, Columbian ground squirrels (Uroc-
itellus columbianus): Neuhaus 2000, bank vole 
(Myodes glareolus): Koivula et  al. 2003, common 
eider (Somateria mollissima): Hanssen et al. 2005).

Over 25  years ago, Stearns (1989) pointed 
out that mothers’ allocation decisions could 
potentially influence offspring’s fitness (or 
fitness components). He further argued that 
inter-generational trade-offs are just as import-
ant as intra-generational trade-offs in life history 
evolution, yet they do not receive as much atten-
tion. Even today, studies investigating intra- as 
well as inter-generational costs of reproduction 
using lifetime fitness measures are uncom-
mon. Adequate quantification of intra- and 
inter-generational costs of reproduction requires 

lifetime reproductive and survival data for at 
least two generations, which are more difficult 
to collect than data needed to test if reproductive 
allocation in one season influences survival or 
reproduction in the next (or next few) seasons. 
Our study is one of the first to examine both in-
tra- and inter-generational effects of age of first 
reproduction in mammals using lifetime fitness 
measures. We find that fitness benefits of earlier 
maturity exceeded any associated costs, leading 
to the preponderance of females attempting to 
breed as yearlings. However, inter-generational 
survival costs of reproduction may be substan-
tial enough to cause variation in age of first re-
production in our study population. We note 
that our results are based on a correlative study; 
correlations can obscure important costs or cre-
ate apparent benefits. Nonetheless, our results 
are consistent with those of Oli and Armitage’s 
(2003, 2008) and suggest that GMGS’s reproduc-
tive decisions tend to maximize fitness of the 
mothers at the potential detriment of fitness of 
their offspring.
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