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Abstract: Population viability analysis (PVA) is useful in management of imperiled species. Applications range
from research design, threat assessment, and development of management frameworks. Given the importance
of PVAs, it is essential that they be rigorous and adhere to widely accepted guidelines; however, the quality of
published PVAs is rarely assessed. We evaluated the quality of 160 PVAs of 144 species of birds and mammals
published in peer-reviewed journals from 1990 to 2017. We hypothesized that PVA quality would be lower with
generic programs than with custom-built programs; be higher for those developed for imperiled species; change
over time; and be higher for those published in journals with high impact factors (IFs). Each included study was
evaluated based on answers to an evaluation framework containing 32 questions reflecting whether and to what
extent the PVA study adhered to published PVA guidelines or contained important PVA components. All measures
of PVA quality were generally lower for studies based on generic programs. Conservation status of the species
did not affect any measure of PVA quality, but PVAs published in high IF journals were of higher quality. Quality
generally declined over time, suggesting the quantitative literacy of PVA practitioners has not increased over time
or that PVAs developed by unskilled users are being published in peer-reviewed journals. Only 18.1% of studies
were of high quality (score >75%), which is troubling because poor-quality PVAs could misinform conservation
decisions. We call for increased scrutiny of PVAs by journal editors and reviewers. Our evaluation framework can
be used for this purpose. Because poor-quality PVAs continue to be published, we recommend caution while
using PVA results in conservation decision making without thoroughly assessing the PVA quality.

Keywords: demographic analysis, endangered species, extinction risk, IUCN, population viability analysis,
probability of extinction

Una Evaluación Cŕıtica del Análisis de Viabilidad Poblacional

Resumen: El análisis de viabilidad poblacional (AVP) es útil para el manejo de especies en peligro. La gama
de aplicaciones incluye el diseño de la investigación, la valoración de amenazas y el desarrollo de marcos de
trabajo para el manejo. Ya que los AVP son de suma importancia, es esencial que sean rigorosos y se adhieran
a las directrices aceptadas por la mayoŕıa; sin embargo, rara vez se examina. la calidad de los AVP publicados
Evaluamos la calidad de 160 AVP para 144 especies de aves y mamı́feros publicados en revistas con revisión por
pares desde 1990 hasta 2017. Nuestra hipotesis consistió en que la calidad del AVP seŕıa más baja con programas
genéricos que con programas hechos a la medida; seŕıa más alta para los programas desarrollados para especies
en peligro; la calidad cambiaŕıa con el tiempo; y la calidad seŕıa más alta para los AVP publicados en revistas
con un alto factor de impacto (VI). Cada estudio que incluimos fue evaluado con base en las respuestas a un
marco de trabajo de evaluación que conteńıa 32 preguntas, las cuales reflejaban si y cuánto se adheŕıan los AVP a
las directrices publicadas para los AVP o si conteńıa componentes importantes de AVP. Todas las medidas de la
calidad de los AVP fueron generalmente más bajas para los estudios basados en programas genéricos. El estado de
conservación de las especies no afectó ninguna de las medidas de la calidad de los AVP, pero aquellos publicados
en revistas con un VI alto tuvieron una mayor calidad. La calidad, en general, declinó con el tiempo, lo que sugiere
que el alfabetismo cuantitativo de quienes practican los AVP no ha incrementado con el tiempo o que se están
publicando AVP desarrollados por usuarios con poca práctica en revistas con revisión por pares. Sólo el 18.1% de
los estudios fue de calidad alta (puntaje >75%), lo cual es preocupante porque los AVP de baja calidad podŕıan
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mal informar las decisiones de conservación. Pedimos un incremento en el escrutinio de los AVP por parte de los
editores y revisores. Nuestro marco de trabajo de evaluación puede usarse para este propósito. Ya que todav́ıa se
publican AVP con baja calidad, recomendamos que se tomen precauciones cuando se usen los resultados de un
AVP en la toma de decisiones de conservación sin evaluar minuciosamente la calidad de dicho estudio.

Palabras Clave: análisis demográfico, análisis de viabilidad poblacional, especie en peligro, población, proba-
bilidad de extinción, riesgo de extinción, UICN
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Introduction

Population viability analyses (PVAs)—an analysis that
uses demographic data in analytical or simulation models
to estimate risk faced by species or populations (Ralls
et al. 2002)—have become an essential tool in conser-
vation (Akçakaya & Sjögren-Gulve 2000; Beissinger &
McCollough 2002; Burgman 2005). They are routinely
used to assess conservation status of species and evalu-
ate relative endangerment of species and populations for
conservation prioritization (e.g., Wiegand et al. 1998). Ad-
ditionally, PVAs are used to identify the proximate causes
of population decline and potential future threats (e.g.,
Lunney et al. 2007), identify research priorities, evaluate
the efficacy of alternative management strategies (e.g.,
Hostetler et al. 2013), and identify management actions
needed to ensure long-term population persistence. Early
recovery plans for threatened or endangered species
listed under the U.S. Endangered Species Act (ESA) and
listing criteria previously used by International Union for
Conservation of Nature and Natural Resource’s Red List
(IUCN) have been criticized for the lack of objectivity and
inconsistency across species (Tear et al. 2005; Neel et al.
2012), and PVAs have been recommended as a solution
to this problem (Lindenmayer et al. 1993; Morris et al.
2002; Doak et al. 2015). The number of PVAs published in
peer-reviewed journals (and presumably their use) has in-
creased over the last 3 decades (Supporting Information).
Recently, PVA results have been used as objective and
SMART (specific, measurable, achievable, realistic, and
time referenced) criteria for developing species recovery
plans (e.g., red wolf [Canis rufus] [Faust et al. 2016];

West Indian manatee [Trichechus manatus latirostris]
[Runge et al. 2017]).

The increase in use of PVAs to guide species recovery
plans can be attributed partially to the availability of soft-
ware packages (generic programs), such as Vortex (Lacy
1993), RAMAS series (Akçakaya & Root 2002), and ALEX
(Possingham & Davies 1995). These programs offer a
user-friendly interface and require little programing input
from users. Furthermore, they can be used with minimal
training in population ecology and mathematical or sta-
tistical modeling. Some generic programs (e.g., Vortex)
are free and widely accessible. These features have made
them popular, but in some cases they have facilitated
inappropriate use of the generic programs (Reed et al.
2002; Beier et al. 2003).

Theory and application of PVA have recently received
increased scrutiny concomitant with an increased recog-
nition of the role of PVAs in conservation decision mak-
ing. With the broader goal of identifying when and how
PVAs should be used, attempts have been made to unam-
biguously establish what constitutes a valid PVA. What
components should a study contain and what analyses
should be performed for it to be considered a PVA? What
outputs should a study report so that PVA results can
be compared across studies or species? Reviews of the
existing PVA literature identify several problems with the
use of PVA results in conservation decision making (e.g.,
Beissinger & Westphal 1998; Burgman & Possingham
2000; Morris et al. 2002; Pe’er et al. 2013), for example,
inadequate background information about study species
or articulation of study objectives; inadequate description
of data sources, period, and methods of data collection;
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failure to estimate demographic parameters with statisti-
cally robust methods or to clearly describe how demo-
graphic parameters were estimated; use of model struc-
tures that inadequately capture the life history of study
species (e.g., age-structured models sometimes used to
model dynamics of stage-structured populations); failure
to incorporate parametric uncertainty (which can sub-
stantially affect model results); inadequate justification of
the choice of demographic model structure and modeling
platform; failure to consider factors that can profoundly
influence population dynamics, such as stochasticity,
density dependence, extrinsic threats, and management
actions, or to adequately justify their exclusion; failure
to perform perturbation analyses involving population
growth rate and extinction parameters; inadequate dis-
cussion of extinction threshold (e.g., critical population
size for quasi extinction) and projection intervals relative
to the study species’ generation time; failure to report
variances (or other measures of precision) of population
growth rate and extinction parameters; failure to test
predictive accuracy of PVA models (with new field data
or through parsing data); failure to adequately discuss
model or data limitations; and management recommen-
dations not supported by PVA results (e.g., management
recommendations based on studies with purely heuristic
objectives).

A persistent challenge to the application of PVAs in
conservation is the lack of consistency across studies
in terms of how PVA models are formulated or im-
plemented and how the results are interpreted. These
inconsistencies have led to substantial variation in PVA
quality (defined in Methods), with some PVA studies lack-
ing vital PVA components. Because of an increasingly
important role of PVAs in conservation decision mak-
ing, the quality of PVA studies needs evaluation so that
conservation professionals can make informed decisions
regarding the usefulness of PVA results in the formulation
or implementation of conservation policies. Yet, such an
assessment has not been made, and a comprehensive
assessment framework has not been developed.

We evaluated the quality of PVAs for mammals and
birds published from 1990 to 2017 by assessing the extent
to which authors incorporated important PVA compo-
nents (Table 1) and followed published PVA guidelines.
We developed an assessment framework to objectively
assess the background-information, model, and analysis
quality and overall PVA quality (Supporting Information).
We expected that the PVA quality would be higher for
threatened species (listed as threatened, vulnerable, en-
dangered, or critically endangered by IUCN or compara-
ble national lists [e.g., under ESA]) than nonthreatened
species due to the research and conservation focus af-
forded them; would change over time because of tempo-
ral changes in ecological and quantitative literacy; would
be higher for studies published in high impact than low
impact factor (IF) journals because manuscripts submit-

ted to high IF journals presumably receive more rigorous
reviews; and would be lower with generic programs than
custom-built programs because generic programs can fa-
cilitate inappropriate program use by users with limited
PVA experience.

Methods

Literature Search and Study Selection and Evaluation

To locate relevant studies, we searched for published arti-
cles on Web of Science (www.clarivate.com) and Google
Scholar (www.scholar.google.com) databases with �1 of
the following keywords: demographic models, extinc-
tion probability, time to extinction, persistence prob-
ability, PVA, population viability analysis, population
extinction, and stochastic population model. Additional
literature was sourced from the references cited in these
publications. We selected an article if the study species
was a bird or mammal; was published in a peer-reviewed
journal from 1990 to 2017; and at least one of the key
extinction parameters (probability of extinction, mean or
median time to extinction, or distribution of extinction
time) was reported. For the 160 published studies that
met these criteria, we recorded year of publication, IF
of journal, modeling platform used (generic or custom
built), and whether the study species was listed as threat-
ened on the IUCN Red List (IUCN 2017) or a similar
national list. Journal IFs were obtained from the Clarivate
Analytics website for 2016 (www.clarivate.com). In cases
where the journal was discontinued, IF of the last year of
publication was used. It is possible that we missed some
relevant studies despite our best efforts.

Study evaluation was based on answers to 32 questions
reflecting whether and to what extent a PVA study ad-
hered to published PVA guidelines or contained essential
PVA components (Supporting Information). We divided
these questions into 3 categories—quality of background
information (4 questions), model (13), and analysis (15)
(details below)—to assess how each study addressed key
PVA components. Each question could be answered with
yes (score 1) or no (score 0). A yes response indicated that
either the essential component was included in the study
or its exclusion was addressed and adequately justified.
A no response indicated the study neither included the
PVA component nor adequately justified its exclusion.

Background-Information Quality

Background-information quality (hereafter, background
quality) was evaluated based on the proportion of yes
responses to questions 1–4 (Supporting Information) de-
signed to evaluate whether the study provided sufficient
background information about the life history of the study
species because the reader would not be able to ob-
jectively evaluate PVA results without this information;
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Table 1. Essential components of population viability analysis (PVA) and logic behind their inclusion.

Component Logic Reference

Objectives PVAs address specific questions or objectives that must be described
clearly so that results can be interpreted in the context of the
study objectives.

Grant 1986; Boyce 1992

Demographic data Adequate data are necessary to estimate demographic variables with
sufficient accuracy and precision and encompass the range of
environmental variation. However, PVAs of data-sparse species
conducted with the objectives of guiding future research have
intrinsic value.

Beissinger & Westphal
1998; Coulson et al.
2001; Reed et al. 2002

Knowledge of biology and
life history

Sufficient information on the species biology and life history is
necessary for meaningful interpretation of PVA modeling results.

Boyce 1992; Beissinger
& Westphal 1998

Model structure PVA model structure should adequately capture life history of the
study species and be described clearly; model structure should be
appropriate for best-available data.

Beissinger & Westphal
1998; Beissinger &
McCollough 2002;
Reed et al. 2002

Stochasticity Demographic, environmental, and genetic stochasticity and
catastrophic events can affect population dynamics and
persistence and should be incorporated in PVA.

Boyce 1992; Ralls et al.
2002; Reed et al.
2002; Pe’er et al. 2013

Density dependence Density-dependence generally reduces extinction risk by stabilizing
the population and should be included when possible.

Boyce 1992; Ralls et al.
2002; Henle et al.
2004

Extrinsic factors Factors, such as habitat loss, poaching, and disease, can affect
population dynamics and persistence and drive populations to
extinction. Simulation of management scenarios is important to
assess the efficacy of alternative management scenarios and should
be applied when possible.

Boyce 1992; Reed et al.
2002

Definition of extinction
parameters

Clear definition of probability of extinction or quasiextinction
threshold is essential for informed use of PVA results.

Ralls et al. 2002; Pe’er
et al. 2013

Time horizon Choice of endpoint of time (time interval) for simulation-based
studies can affect PVA results. Choice of time horizon should be
appropriate for the generation time of the study species and
should be reported. Reporting results based on multiple time
horizons may be helpful in some cases.

Ralls et al. 2002; Pe’er
et al. 2013

Means and variances of
extinction parameters

Point estimates and measures of precision (CI and variances) of
population growth rate and extinction parameters should be
reported.

Boyce 1992; Ellner et al.
2002

Perturbation analysis Understanding the absolute and proportional sensitivity of
population growth rate and extinction parameters to vital
demographic rates is essential for planning future research and
management. Therefore, perturbation analysis should be an
integral part of PVAs.

Boyce 1992; Ralls et al.
2002; Reed et al. 2002

Validation Model validation by comparing PVA-predicted population sizes with
observed sizes should be conducted to evaluate predictive
accuracy of the PVA model when possible.

Beissinger & Westphal
1998; Ralls et al. 2002

clearly specified the study objectives, which is essential
because PVA results must be interpreted relative to study
objectives; and clearly explained quantity and quality of
data and period of data collection because PVA results
depend on the data used to parameterize the model.
When input parameters were sourced from other pub-
lications, we reviewed the source publications to answer
the questions related to the description of data quantity
and quality and parameter-estimation methods.

Model Quality

Model quality was evaluated based on the proportion
of yes responses to questions 5–17 (Supporting Infor-
mation) designed to assess whether the model structure

adequately reflected the life history of the study species;
input parameters were estimated using statistically ro-
bust analysis of the best available data set; paramet-
ric uncertainty was appropriately incorporated (White
2000); influence of environmental, demographic, and
genetic stochasticity was included (Lande 1993); influ-
ence of density dependence was included (many pop-
ulations may be density regulated, and ignoring density
dependence when it is operating in a population can
lead to incorrect estimates of extinction parameters);
and extrinsic threats or management scenarios were
included. These factors are important because extrin-
sic threats (e.g., habitat loss and poaching) can influ-
ence population dynamics and persistence and objec-
tive evaluation of alternative management scenarios (e.g.,
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population supplementation) can inform conservation
planning.

Analysis Quality

Analysis quality was evaluated based on the proportion
of yes responses to questions 18–32 (Supporting Infor-
mation) designed to assess whether perturbation (or
sensitivity) analyses involving population growth or ex-
tinction parameters were conducted. Proportional or ab-
solute sensitivity analyses provide important insights into
the factors that affect population growth or extinction
parameters. These results can guide future research or
management efforts (McCarthy et al. 1995). They were
also used to assess whether alternative scenarios were
evaluated and results of all scenarios were reported; a
clear definition of extinction threshold was provided
because the usefulness of PVA studies in species con-
servation planning is difficult to evaluate without this
information; estimates of population growth rate and �1
extinction parameter were reported; variances of popu-
lation growth rate and extinction parameters (or other
measures of precision) were reported because this in-
formation is necessary to gauge the precision of these
estimates; predictive accuracy of PVA model was tested
by parsing data or using time-series data from the sub-
sequent years or similar population; and data and model
limitations were discussed clearly because data are rarely
sufficient to permit perfect analyses with adequate pre-
cision. A PVA model only outlines population processes
and can never capture the complexity of nature perfectly.
Thus, it is necessary to delineate these limitations so that
readers can make informed decisions.

Overall Quality

Overall quality was assessed based on the proportion
of yes responses to all 32 questions (Supporting Infor-
mation). We defined quality as the proportion of yes
responses in each category. Thus, quality ranged from
0.0 (poor-quality study) to 1.0 (perfect study; answers to
all questions were yes). We considered studies scoring
>0.75 to be of high quality and studies scoring <0.50 of
poor quality. The studies with scores of 0.50−0.75 were
considered of average quality.

Questions in the evaluation framework (Supporting In-
formation) were designed such that they were weighted
equally. If a study did not consider a PVA component dis-
cussed above but provided an adequate justification for
its exclusion, it was not penalized. For example, if authors
explained that they ignored demographic stochasticity
because the starting population size was in the 1000s, the
study received a score of 1 for that question. Likewise,
if a study contained statistical evidence that the size of
the study population was too small for the manifestation
of density-dependent effects and adequately addressed

the issue, it was not penalized for excluding density
dependence.

Statistical Analyses

We used generalized linear mixed models with binomial
distribution (Zuur et al. 2009; Agresti 2015) to test for the
effect on PVA quality of the following covariates: conser-
vation status of study species (threatened vs. not), year
of publication (continuous variable, 1990–2017), journal
IF (continuous variable, 0.31−37.02), and modeling plat-
form (generic vs. custom built). We tested for singular
and additive effects of these covariates and the relevant
2-way interactive effects. Our sample included instances
of �1 PVAs of the same species and �1 studies by the
same authors (Supporting Information). To account for
potential lack of independence of studies by the same
authors or on the same species, we included the random
effect of study species and the first author of the study.
We used an information-theoretic approach Akaike in-
formation criterion to perform model selection and for
statistical inference (Burnham & Anderson 1998). Covari-
ate effects were assessed by comparing models with and
without the covariate and determining whether 90% CI
for the slope parameter overlapped 0 (in case of categor-
ical variables, the odds ratio overlapped 1.0). We used
Hosmer–Lemeshow test (Hosmer & Lemeshow 1980) to
assess goodness of fit of the saturated model (Burnham &
Anderson 1998). Marginal R2, which quantifies the pro-
portion of variance explained by fixed effects (Nakagawa
& Schielzeth 2013; Johnson 2014), was used as a measure
of the fit of the top model.

We fitted generalized linear mixed effect models with
the lme4 package (Bates et al. 2015), implemented
the Hosmer–Lemeshow goodness-of-fittest with general-
hoslem package (Matthew 2017), and calculated marginal
R2 with MuMIn package (Barton 2013) in R computing
environment (R Core Team 2017). To account for model-
selection uncertainties, we conducted model averaging
to estimate model-averaged parameters and their uncon-
ditional variances (Burnham & Anderson 1998) with Mu-
MIn package (Barton 2013).

Out of 160 total studies evaluated, 155 claimed to
be PVAs, whereas the rest were designed to assess
population-level impact of climate change (Hunter et al.
2010), population dynamics under alternative manage-
ment scenarios (Taylor et al. 2008), or population dy-
namics of the study species (Caswell et al. 1999). These
5 studies were included here because they met our selec-
tion criteria and results of some of these studies have been
used in conservation planning (e.g., Hunter et al. 2010).
Because they did not claim to be PVAs, we evaluated the
ranking of these studies by modifying guiding questions
that were specific to PVAs but did not necessarily apply to
general demographic studies (Supporting Information).
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Results

We evaluated 61 studies of birds and 99 studies of mam-
mals (144 species) published in 154 peer-reviewed arti-
cles. These studies reported results for 56 birds and 88
mammal species (Supporting Information). Most studies
(73.8%, all percentages are based on n = 160) focused
on threatened species, clearly articulated the study ob-
jectives (66.2%), and described the period and meth-
ods of data collection (73.1%). The majority of stud-
ies used an individual-based modeling (IBM) framework;
unstructured model based on count data was the least
commonly used modeling approach (IBM 45.6%; struc-
tured matrix population models 45.0% and unstructured
models 9.4%). The majority of the custom-built mod-
els were structured matrix population models (64.0%);
21.8% used diffusion-approximation models and 14.2%
used individual-based models. Vortex was the most com-
monly used (73.9%), and unified life model (0.01%) was
the least commonly used generic program (Supporting
Information). The majority of studies incorporated envi-
ronmental (83.8%) and demographic (84.4%) stochastic-
ity, but few incorporated genetic stochasticity (25.0%).
The percentage of studies that included the influence of
(or adequately justified exclusion of) catastrophes, den-
sity dependence, potential management scenarios, and
extrinsic threats was 42.5%, 50.6%, 35.6%, and 56.2%,
respectively. The majority of the studies reported the
population growth rate (82.5%), probability of extinction
(85.6%), and mean time to extinction (45.6%). Variance
(or other measures of precision) of population growth
rate, probability of extinction, and mean time to extinc-
tion were reported by 63.7%, 50.6%, and 28.1% of the
studies, respectively. Most studies (91.8%) included sensi-
tivity analysis involving at least one extinction parameter.

Background Quality

The background quality was lower for studies based
on generic programs (odds ratio [OR] = 0.45, 90% CI
0.30−0.58). It was higher for studies published in high
IF journals (slope parameter: β [SE] = 0.09 [0.04], 90%
CI 0.01−0.6) and it decreased over time (β = −0.03
[0.01], 90% CI −0.05 to −0.01). The background qual-
ity was not affected by conservation status of the study
species (OR = 1.10, 90% CI 0.73−1.66) (Supporting
Information).

Hosmer–Lemeshow test provided no evidence of lack
of fit of the saturated model (χ2 = 4.81, df = 8, p = 0.78).
The most parsimonious model (Table 2, background qual-
ity) included an interactive effect of the journal IF and
the use of generic programs (Fig. 1). According to this
model, background quality of the PVAs based on generic
programs was higher for studies published in high IF
journals (R2 = 0.10).

Figure 1. Interactive effect of journal impact factor
(IF) and modeling platform (generic or custom built)
on background-information quality as inferred from
the most parsimonious model (background-quality
model, Table 3). Journal IFs range from 0.31 (Great
Basin Naturalist renamed Western North American
Naturalist) to 37.02 (Science). The highest IF just
below Science was 9.661 (Proceedings of National
Academy of Sciences of the United States of America).

Model Quality

Model quality was lower for studies based on generic
programs (OR = 0.78, 90% CI 0.65−0.94). It was not
affected by the IF of the journal (β [SE] = 0.01 [0.01],
90% CI −0.01 to 0.04) or conservation status of the study
species (OR = 1.1.2, 90% CI 0.91−1.38) and did not
change substantially over time (β = −0.004 [0.006], 90%
CI −0.01 to 0.007) (Supporting Information).

Hosmer–Lemeshow test provided no evidence of lack
of fit of the saturated model (χ2 = 3.41, df = 8, p =
0.91). The most parsimonious model (Table 2, model
quality) included the use of generic programs and ran-
dom effect of author (R2 = 0.05). Model quality was
low for studies based on generic programs (OR = 0.76,
90% CI 0.62−0.93). A competing model (Table 2, model
quality) included an interactive effect of year of publi-
cation and modeling platform (Table 2, model quality);
however, 90% CIs for all model parameters included 0
(Table 3).

Analysis Quality

Analysis quality was lower for studies based on generic
programs (OR = 0.67, 90% CI 0.56–0.79) than custom-
built programs; decreased over time (β [SE] = –0.03
[0.006], 90% CI –0.04 to –0.02); and was higher for stud-
ies published in high IF journals (β = 0.05 [0.01], 90% CI
0.02–0.08) than for studies published in low IF journals.
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Table 2. Results of model comparison to test the effect of journal impact factor (IF), year of the publication (year), use of generic programs versus
custom programs, and conservation status of the species (threatened vs. not threatened) on the probability of high-quality background information,
model, analysis, and overall population viability analysis (PVA) quality.a

Model Kb AICcc �AICcd Weighte Log likelihood

Background quality
IF ∗ generic + (1 | species) 5 395.70 0.00 0.20 −192.60
IF ∗ generic + (1 | author) 5 395.90 0.20 0.20 −192.70
year + IF ∗ generic + (1 | species) 6 396.50 0.90 0.10 −192.00
year + IF ∗ generic + (1 | author) 6 396.60 0.90 0.10 −192.00
threatened + IF ∗ generic + (1 | species) 6 397.60 2.00 0.10 −192.50
threatened + IF ∗ generic + (1 | author) 6 397.80 2.20 0.10 −192.60
year + threatened + IF ∗ generic + (1 | species) 7 398.60 2.90 0.00 −191.90
year + threatened + IF ∗ generic + (1 | author) 7 398.60 2.90 0.00 −191.90
generic + year + (1 | author) 4 399.70 4.00 0.00 −195.70
generic + year + (1 | species) 4 400.10 4.40 0.00 −195.90

Model quality
year ∗ generic + (1 | author) 5 662.90 0.00 0.20 −326.20
generic + (1 | author) 3 662.90 0.00 0.20 −328.40
threatened + year ∗ generic + (1 | author) 6 664.40 1.50 0.10 −325.90
threatened + generic + (1 | author) 4 664.50 1.60 0.10 −328.10
IF + year ∗ generic + (1 | author) 6 664.60 1.70 0.10 −326.00
generic + IF + (1 | author) 4 664.60 1.70 0.10 −328.20
generic + year + (1 | author) 4 664.70 1.80 0.10 −328.20
IF ∗ generic + (1 | author) 5 665.60 2.70 0.10 −327.60
IF + (1 | author) 3 665.70 2.90 0.00 −329.80
IF + generic + threatened + (1 | author) 5 666.10 3.20 0.00 −327.80

Analysis quality
generic + year + (1 | author) 4 754.50 0.00 0.20 −373.10
year + generic + threatened + (1 | author) 5 755.70 1.30 0.10 −372.70
year ∗ generic + (1 | author) 5 756.00 1.50 0.10 −372.80
IF + generic + year + (1 | author) 5 756.20 1.80 0.10 −372.90
year + (1 | author) 3 756.80 2.40 0.10 −375.30
generic + (1 | author) 3 757.00 2.50 0.10 −375.40
threatened + year ∗ generic + (1 | author) 6 757.30 2.90 0.10 −372.40
IF + generic + threatened + year + (1 | author) 6 757.50 3.00 0.00 −372.50
IF + year ∗ generic + (1 | author) 6 757.90 3.40 0.00 −372.70
year + IF + (1 | author) 4 757.90 3.50 0.00 −374.80

Overall quality
generic + year + (1 | author) 4 874.10 0.00 0.20 −432.90
year + generic + threatened + (1 | author) 5 874.90 0.80 0.10 −432.20
IF + generic + year + (1 | author) 5 875.10 1.00 0.10 −432.40
year + IF ∗ generic + (1 | author) 6 875.70 1.60 0.10 −431.60
IF + generic + threatened + year + (1 | author) 6 875.70 1.70 0.10 −431.60
year ∗ generic + (1 | author) 5 875.80 1.70 0.10 −432.70
threatened + year ∗ generic + (1 | author) 6 876.50 2.40 0.00 −432.00
year + threatened + IF ∗ generic + (1 | author) 7 876.60 2.50 0.00 −430.90
IF + year ∗ generic + (1 | author) 6 876.70 2.60 0.00 −432.10
generic + (1 | author) 3 876.70 2.60 0.00 −435.30

aTen best-supported models presented: +, additive effect; ∗, additive and interactive effect; (1 | species), random effect of species; (1 | author),
random effect of the author.
bNumber of parameters.
cAkaike information criterion corrected for small sample size.
dMeasure of each model compared with the best model; calculated as a value of AICc – minimum AICc.
eWeight of the model.

Conservation status of the study species did not influence
the analysis quality (OR = 1.15, 90% CI 0.95–1.40).

Hosmer–Lemeshow test provided no evidence of lack
of fit of the saturated model (χ2 = 4.67, df = 8, p = 0.79).
The most parsimonious model (Table 2, analysis quality)
included an additive effect of the year of publication
and modeling platform (Table 2, analysis quality). This
model suggested that the overall PVA quality was gener-

ally lower for studies based on generic programs and it
decreased over time, irrespective of modeling platform
(Fig. 2) (R2 = 0.09).

Overall Quality

Overall quality (Table 2, overall quality) increased as jour-
nal IF increased (β [SE] = 0.03 [0.01], 90% CI 0.02–0.05)
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Table 3. Estimates of regression coefficients (β) based on well-supported models (i.e., models with �AICc < 2) for quality of background informa-
tion, model, analysis and, overall PVA quality to assess the effect of covariates impact factor of journal (IF), year of publication (year), use of generic
versus custom programs (generic), and conservation status of the species (threatened or not threatened) and the interactive effect (colon) between
IF and generic and year and generic.

Model βa SEb p LCIc UCId

Background quality
1 intercept 1.62 0.18 0.00 1.33 1.94

IF −0.05 0.11 0.63 −0.22 0.15
generic (yes) −0.65 0.23 0.00 −1.04 −0.28
IF: generic (yes) 0.88 0.31 0.01 0.37 1.41
random effect (species) SD 0.24 NA NA 0.00 0.57

2 intercept 1.61 0.19 0.00 1.32 1.93
IF −0.05 0.11 0.67 −0.21 0.17
generic (yes) −0.65 0.23 0.00 −1.04 −0.28
IF: generic (yes) 0.86 0.31 0.01 0.35 1.37
random effect (author) SD 0.16 NA NA 0.00 0.58

3 intercept 1.59 0.18 0.00 1.30 1.91
year −0.12 0.10 0.25 −0.28 0.05
IF −0.06 0.11 0.55 −0.23 0.13
generic (yes) −0.62 0.23 0.01 −1.01 −0.24
IF: generic (yes) 0.83 0.31 0.01 0.33 1.36
random effect (species) SD 0.20 NA NA 0.00 0.56

4 intercept 1.59 0.19 0.00 1.30 1.91
year −0.12 0.10 0.24 −0.30 0.04
IF −0.06 0.11 0.60 −0.22 0.15
generic (yes) −0.62 0.23 0.01 −1.02 −0.25
IF: generic (yes) 0.82 0.31 0.01 0.31 1.33
random effect (author) SD 0.19 NA NA 0.00 0.58

5 intercept 1.54 0.25 0.00 1.15 1.97
threatened (yes) 0.10 0.22 0.66 −0.27 0.46
IF −0.05 0.11 0.67 −0.22 0.16
generic (yes) −0.65 0.23 0.00 −1.04 −0.28
IF: generic (yes) 0.87 0.31 0.01 0.36 1.40
random effect (species) SD 0.24 NA NA 0.00 0.58

6 intercept 1.54 0.25 0.00 1.15 1.97
threatened (yes) 0.10 0.22 0.66 −0.27 0.46
IF −0.05 0.11 0.67 −0.22 0.16
generic (yes) −0.65 0.23 0.00 −1.04 −0.28
IF: generic (yes) 0.87 0.31 0.01 0.36 1.40
random effect (species) SD 0.24 NA NA 0.00 0.58

Model quality
1 intercept 0.77 0.10 0.00 0.59 0.92

year 0.11 0.10 0.25 −0.09 0.13
generic (yes) −0.25 0.13 0.05 −0.42 0.03
year: generic (yes) −0.26 0.13 0.04 −0.11 0.52
random effect (author) SD 0.40 NA NA 0.30 0.54

2 intercept 0.76 0.10 0.00 0.60 0.93
generic (yes) −0.26 0.13 0.04 −0.47 −0.06
random effect (author) SD 0.43 NA NA 0.31 0.55

3 intercept 0.69 0.14 0.00 0.46 0.93
threatened (yes) 0.11 0.13 0.42 −0.11 0.33
year 0.12 0.10 0.24 −0.05 0.28
generic (yes) −0.25 0.12 0.05 −0.46 −0.04
year: generic (yes) −0.26 0.13 0.04 −0.48 −0.05
random effect (author) SD 0.39 NA NA 0.27 0.52

4 intercept 0.68 0.14 0.00 0.45 0.92
threatened (yes) 0.10 0.14 0.45 −0.12 0.33
generic (yes) −0.26 0.13 0.04 −0.47 −0.06
random effect (author) SD 0.42 NA NA 0.30 0.55

5 intercept 0.76 0.10 0.00 0.60 0.93
IF 0.04 0.06 0.50 −0.06 0.16
year 0.12 0.10 0.22 −0.04 0.29
generic (yes) −0.22 0.13 0.08 −0.44 −0.01
year: generic (yes) −0.27 0.13 0.04 −0.48 −0.05
random effect (author) SD 0.40 NA NA 0.27 0.53

Continued
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Table 3. Continued.

Model βa SEb p LCIc UCId

6 intercept 0.76 0.10 0.00 0.60 0.93
IF 0.04 0.06 0.50 −0.06 0.16
year 0.12 0.10 0.22 −0.04 0.29
generic (yes) −0.22 0.13 0.08 −0.44 −0.01
year: generic (yes) −0.27 0.13 0.04 −0.48 −0.05
random effect (author) SD 0.40 NA NA 0.27 0.53

7 intercept 0.75 0.10 0.00 0.58 0.92
generic (yes) −0.24 0.13 0.07 −0.45 −0.02
IF 0.04 0.06 0.51 −0.06 0.15
random effect (author) SD 0.43 NA NA 0.31 0.55

8 intercept 0.75 0.10 0.00 0.59 0.92
generic (yes) −0.25 0.13 0.05 −0.46 −0.04
year −0.04 0.07 0.55 −0.15 0.07
random effect (author) SD 0.43 NA NA 0.31 0.55

9 intercept 0.75 0.10 0.00 0.59 0.92
IF 0.02 0.07 0.80 −0.09 0.13
generic (yes) −0.19 0.14 0.16 −0.42 0.03
IF: generic (yes) 0.20 0.19 0.29 −0.11 0.52
random effect (author) SD 0.42 NA NA 0.30 0.54

Analysis quality
1 intercept 0.62 0.11 0.00 0.45 0.80

generic (yes) −0.28 0.13 0.04 −0.50 −0.06
year −0.15 0.07 0.03 −0.27 −0.04
random effect (author) SD 0.56 NA NA 0.45 0.67

2 intercept 0.52 0.15 0.00 0.28 0.77
year −0.15 0.07 0.03 −0.27 −0.04
generic (yes) −0.28 0.13 0.03 −0.50 −0.06
threatened (yes) 0.14 0.14 0.34 −0.10 0.38
random effect (author) SD 0.55 NA NA 0.45 0.67

3 intercept 0.62 0.11 0.00 0.45 0.79
year −0.21 0.11 0.05 −0.40 −0.03
generic (yes) −0.28 0.13 0.04 −0.50 −0.06
year: generic (yes) 0.10 0.14 0.47 −0.13 0.34
random effect (author) SD 0.55 NA NA 0.45 0.67

4 intercept 0.62 0.11 0.00 0.44 0.79
IF 0.03 0.06 0.59 −0.07 0.13
generic (yes) −0.26 0.14 0.06 −0.48 −0.04
year −0.15 0.07 0.04 −0.27 −0.03
random effect (author) SD 0.56 NA NA 0.45 0.67

5 intercept 0.45 0.07 0.00 0.35 0.56
year −0.18 0.07 0.01 −0.29 −0.06
random effect (author) SD 0.58 NA NA 0.47 0.69

Overall quality
1 intercept 0.77 0.07 0.00 0.65 0.89

generic (yes) −0.32 0.09 0.00 −0.47 −0.16
year −0.11 0.05 0.03 −0.19 −0.03
random effect (author) SD 0.40 NA NA 0.33 0.48

2 intercept 0.68 0.11 0.00 0.51 0.86
year −0.11 0.05 0.03 −0.19 −0.03
generic (yes) −0.32 0.09 0.00 −0.48 −0.17
threatened (yes) 0.12 0.10 0.24 −0.05 0.29
random effect (author) SD 0.40 NA NA 0.33 0.47

3 intercept 0.76 0.08 0.00 0.63 0.88
IF 0.05 0.04 0.29 −0.02 0.12
generic (yes) −0.29 0.10 0.00 −0.45 −0.14
year −0.10 0.05 0.04 −0.18 −0.02
random effect (author) SD 0.40 NA NA 0.33 0.48

Continued
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Table 3. Continued.

Model βa SEb p LCIc UCId

4 intercept 0.76 0.08 0.00 0.64 0.89
year −0.09 0.05 0.06 −0.18 −0.01
IF 0.03 0.04 0.53 −0.04 0.10
generic (yes) −0.25 0.10 0.01 −0.42 −0.09
IF: generic (yes) 0.18 0.14 0.21 −0.06 0.41
random effect (author) SD 0.40 NA NA 0.32 0.47

5 intercept 0.66 0.11 0.00 0.49 0.84
IF 0.05 0.04 0.26 −0.02 0.12
generic (yes) −0.30 0.10 0.00 −0.46 −0.14
threatened (yes) 0.13 0.10 0.22 −0.04 0.29
year −0.10 0.05 0.04 −0.18 −0.02
random effect (author) SD 0.39 NA NA 0.32 0.47

6 intercept 0.66 0.11 0.00 0.49 0.84
IF 0.05 0.04 0.26 −0.02 0.12
generic (yes) −0.30 0.10 0.00 −0.46 −0.14
threatened (yes) 0.13 0.10 0.22 −0.04 0.29
year −0.10 0.05 0.04 −0.18 −0.02
random effect (author) SD 0.39 NA NA 0.32 0.47

7 intercept 0.69 0.11 0.00 0.51 0.86
threatened (yes) 0.12 0.10 0.23 −0.05 0.29
year −0.07 0.08 0.38 −0.19 0.06
generic (yes) −0.32 0.09 0.00 −0.47 −0.16
year: generic (yes) −0.07 0.10 0.48 −0.23 0.09
random effect (author) SD 0.40 NA NA 0.32 0.47

aSlope parameter estimate.
bStandard error of slope parameter.
cLower value of 90% CI of the slope parameter.
dUpper value of 90% CI of the slope parameter.

Figure 2. Additive effect of the year of publication
and modeling platform (generic vs. custom built) on
analysis quality as inferred from the most
parsimonious model (analysis quality, Table 3).

and was lower for studies developed using generic pro-
grams than custom-built programs (OR = 0.69, 90% CI
0.61–0.77). Overall quality was unaffected by the conser-

vation status of the study species (OR = 1.13, 90% CI
0.99–1.30) and decreased over time (β = –0.02 [0.001],
90% CI –0.02 to –0.01).

Hosmer–Lemeshow test provided no evidence of lack
of fit of the saturated model (χ2 = 2.19, df = 8,
p = 0.97). The most parsimonious model describing the
overall quality included an additive effect of the use of
generic program and year of publication (Table 2). This
model suggested that the overall quality of studies based
on generic programs was lower than for custom-built
programs and declined over time, irrespective of the
modeling platform (Fig. 3) (R2 = 0.05).

There was substantial model-selection uncertainty; sev-
eral models were within �AIC<2 for all measures of PVA
quality (Table 2). Marginal R2 values were low even for
the best-supported models. Model-averaged results gener-
ally agreed with those based on the respective top-ranked
models (Supporting Information).

Ranking of PVA Studies Based on Quality

The percentage of studies with a quality score >0.75
was 31.8%, 30.0%, and 25.0% (n = 160) for background,
model, and analysis quality, respectively. Only 18.1%
(n = 160) of the studies had overall quality score
> 0.75 (Supporting Information). The percentage of stud-
ies that scored < 0.50 was 8.7%, 18.7%, 25.0%, and 14.3%
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Figure 3. Additive effect of the year of publication
and modeling platform (generic vs. custom built) on
overall PVA quality inferred from the most
parsimonious model (overall quality, Table 3).

for background, model, analysis, and overall quality,
respectively.

The top-performing study in overall quality was Wie-
gand et al. (1998), and the second-best score was
shared among Gaona et al. (1998), Bakker et al. (2009),
and Hostetler et al. (2013). Among studies based on
generic programs, Forys and Humphrey (1999) and Slotta-
Bachmayr et al. (2004) were the top performers. The top
5 studies (based on overall quality score) used custom-
built models, whereas the 5 lowest-scoring studies used
generic programs.

Discussion

Limited resources available for the management of threat-
ened species necessitate that conservation decisions be
made based on sound quantitative assessment of the rel-
ative or absolute risk faced by the species (Doak et al.
2015). Population viability analysis can be used to objec-
tively assess the absolute or relative viability of species
or populations, to identify proximate causes of popula-
tion declines, compare management alternatives, and to
optimize further research (Himes Boor 2014; Doak et al.
2015). Therefore, it is essential for readers to be able to
assess the quality and reliability of results provided by
PVAs in light of the broadly accepted PVA guidelines.
Our goal was to objectively evaluate the quality of PVAs
of birds and mammals published since 1990 and to test
for the influence of modeling platform, year of publica-

tion, publication journal IF, and conservation status of
the study species on the PVA quality.

Quality of PVA Studies Based on Generic Programs

Generic PVA programs, such as Vortex and RAMAS,
were developed by scientists who are experts in the
theory and application of PVA. These programs are
powerful tools when used by modelers with ade-
quate knowledge of study species’ life history, popula-
tion modeling, and PVA guidelines. Recent versions of
generic programs, such as Vortex (http://www.vortex10.
org/Vortex10.aspx), now provide sufficient flexibility to
allow customization for some aspects of PVA. However,
concerns have been raised regarding the quality of PVA
studies based on generic programs (Reed et al. 2002;
Beier et al. 2003) because even users with little expe-
rience of demographic modeling can easily use these
programs. Therefore, we expected the PVA quality to be
lower for studies based on generic programs. Consistent
with this expectation, background, model, analysis, and
overall quality of PVA studies based on generic programs
were lower compared with those that were custom-built.
The lower quality of PVAs based on generic programs
may be a consequence of several factors, including their
relative ease of use. Performing PVAs with generic pro-
grams requires little ecological or statistical knowledge
or programming experience. This lack of relevant knowl-
edge can adversely affect PVA quality (Burgman & Poss-
ingham 2000; Reed et al. 2002). Generic programs are
sometimes used for PVAs even when the structure of
the model or models offered by the software is inconsis-
tent with study species’ life history or when the model
cannot be adequately parameterized with available data.
Generic programs, such as Vortex, provide default pa-
rameter values, which permit analyses even when data
are insufficient for a meaningful PVA.

One potential advantage of generic programs is that
the studies developed using these programs should be
reproducible. However, Morrison et al. (2016) found that
40% of the PVAs based on generic programs they exam-
ined are nonreproducible because authors often failed to
report values of input parameters or to adequately ex-
plain how the demographic parameters were estimated.
We found that PVAs developed using generic programs
fared poorly in analysis quality. This result is troubling
because the use of generic programs to conduct PVAs
has increased over time (Supporting Information). The
aforementioned issues are primarily a consequence of
inappropriate use of these tools or a result of users’ lack
of knowledge of population dynamics or study species’
life histories. However, generic programs can be used to
produce high-quality PVAs when used appropriately and
nonreproducibility was not a problem specific to PVAs
developed using generic programs.
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Change in PVA Quality Over Time

Since the 1990s, computational power has increased
exponentially, and several PVA guidelines have been
published (e.g., Beissinger & McCollough 2002; Pe’er
et al. 2013; Zeigler et al. 2013). Also, there have been
concerted efforts to improve quantitative skills of life-
science students over time (Thompson et al. 2013). Thus,
we expected PVA quality to increase over time. Inter-
estingly, model quality did not change over time, but
background, analysis, and overall quality declined. Fur-
thermore, the consideration of parametric uncertainty
in input parameters also declined over time (Support-
ing Information).The decline in overall PVA quality over
time is troubling and perhaps reflects the fact that some
researchers are unaware of, or fail to adhere to, widely ac-
cepted PVA guidelines. Even though overall and analysis
quality declined for PVAs developed using both custom
built and generic models, it remained lower for PVAs de-
veloped using generic platform compared with custom-
built models. Thus, it appears that the number of PVA
studies, and presumably their use in conservation deci-
sion making, has increased over time at the cost of quality
(Supporting Information). Because most PVA guidelines
were published before 2003, we expected studies pub-
lished after 2005 to be of higher quality. Contrary to our
expectation, the overall PVA quality was lower for studies
published after 2005 (Supporting Information).

Effect of Journal IF on PVA Quality

We expected the PVA quality to be higher for studies pub-
lished in high IF journals because high IF is often thought
to reflect better study quality (Saha et al. 2003), which
can be a result of more rigorous review process. Consis-
tently, background, analysis, and overall qualities were
positively associated with the IF of the journal. This sug-
gests that high IF journals scrutinized PVA manuscripts
more rigorously with respect to the quality and com-
munication of background information and results. The
background quality of PVAs developed using generic pro-
grams increased with journal IF, whereas journal IF had
no influence on the background quality of PVAs devel-
oped using custom-built models. However, journal IF had
no effect on the model quality, suggesting that there was
no difference between high-profile journals and journals
of lower IF in scrutinizing PVA manuscript with respect
to many important aspects of PVA (e.g., robust estimation
of input parameters and incorporation of stochasticities).
Highest IF journal included in this study was Science
(IF = 37.02) (Frick et al. 2010). The IF for this journal
was substantially higher than the other journals included
in our study. However, reanalysis of data after excluding
this study did not substantially alter the relationship be-
tween IF and PVA quality or conclusions regarding the
relationship between IF and PVA quality.

Quality of Threatened Species PVA

We expected the quality of PVAs of threatened species to
be higher because more resources are devoted to study-
ing imperiled species (Taylor et al. 2005; Rodrigues et al.
2006) and because of the expectation that researchers
would be more thorough due to the potentially high cost
of erroneous results. Contrary to our expectation, con-
servation status of the study species had no discernible
effect on PVA quality. Many threatened species occur in
low numbers and are difficult to study, which sometimes
lead to insufficient data for rigorous estimation of de-
mographic parameters and can negatively influence PVA
quality.

Characteristics of Top-Performing PVAs

The highest ranking PVAs received identical overall qual-
ity scores (Supporting Information). These studies shared
many characteristics because they all thoroughly de-
scribed study species’ life histories and clearly stated
study objectives; estimated model parameters with sta-
tistically robust analysis of best available data sets and
adequately described methods of data collection and an-
alytical approaches used to estimate model parameters;
developed the model tailored to the study species’ life his-
tories; rigorously estimated demographic parameters us-
ing the best available data; adequately addressed stochas-
ticities, density dependence, and external factors that
may influence population dynamics and persistence or
adequately addressed their exclusion; conducted pertur-
bation analysis; reported estimates of population growth
and extinction parameters, which were defined unam-
biguously; and discussed model limitations. All 4 stud-
ies used custom-built modeling platform, and all except
Hostetler et al. (2013) were published in the same high
IF journal (Ecological Monographs).

Among studies based on generic programs, Forys and
Humphrey (1999) and Slotta-Bachmayr et al. (2004) were
the 2 top performers and both were conducted using
Vortex. These studies clearly stated study objectives;
adequately described life history of the study species,
methods, and period of data collection; incorporated
stochasticites and threats; and modeled alternative man-
agement scenarios. Furthermore, they conducted pertur-
bation analysis, clearly defined extinction parameters,
and reported means and variances of extinction parame-
ters and discussed model limitations. These and other fea-
tures of top-performing studies, however, were lacking
for many studies that were based on generic programs.
Demographic studies that did not claim to be PVAs but
were included in our study (e.g., Hunter et al. 2010)
tended to be of high quality, especially with respect to
background and model quality (Supporting Information).

Although the use of PVA in conservation planning is
often emphasized, there are many other potential uses
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of PVA (Beissinger & McCollough 2002; Morris & Doak
2002). For example, PVAs that do not directly deal with
conservation planning may still contribute to the body
of knowledge via collation of information and analyses of
monitoring data, identification of key life-history stages as
management targets, research prioritization, or provision
of answers to what-if questions (i.e., heuristic studies).
Given the many uses of PVA, it is not always clear how
to evaluate their quality. We assumed the primary use of
PVA is to inform the conservation decision making and
evaluated all PVAs similarly based on criteria identified
as important in the PVA literature. Although we believe
that our approach to PVA evaluation is reasonable and
unbiased, we acknowledge that it may sometimes unfairly
down rank PVA studies of data-deficient species or those
that occur in numbers too low to permit sufficient data
for rigorous estimation of demographic parameters.

Although predictive accuracy is considered an impor-
tant component of PVA (Brook et al. 2000; McCarthy
et al. 2001), it is not always clear how best to test pre-
dictive accuracy or validate PVA models (Beissinger &
Westphal 1998). Furthermore, many PVA studies may not
have sufficient data to perform model validation or test
predictive accuracy. Well-conducted PVA studies guided
by specific questions have intrinsic values, even if they
lack long-term data or do not test for predictive accuracy.
Also, because our evaluation depended solely on the
information provided by the authors, we could not
distinguish, for example, between a poor description of
a high-quality study or simply a poor-quality PVA study.
Thus, a study that used detailed data but failed to ade-
quately describe data collection or parameter estimation
methods would be ranked similarly to one that lacked
adequate data. Finally, we tested for covariate effects on
measures of PVA quality based on the statistical signifi-
cance of the slope parameter defining the relationship
between the 2. Statistical significance does not necessar-
ily imply biological significance (Yoccoz 1991), and our
results should be interpreted with caution.

The use of PVA results in conservation decision making
has been recommended partly because they are thought
to be objective and repeatable (Doak et al. 2015). Given
the importance of PVAs in imperiled species manage-
ment, many authors have insisted on rigor and consis-
tency in PVA analysis and reporting of results (Beissinger
& McCollough 2002). Yet, we found that many published
PVAs failed to adequately describe data sources and failed
to report estimates of model parameters, making many
such studies nonreproducible (Morrison et al. 2016).
Only 18.1% of the studies we evaluated were scored as
high quality (score > 0.75); 14.3% of the studies were
of poor quality (score < 0.50). Management recommen-
dations based on poor-quality PVAs can mislead wildlife
managers and thus adversely affect the persistence of
imperiled populations.

Although widely accepted PVA guidelines have been
available for more than a decade, our results show that
many authors are either unaware of these guidelines
or simply ignore them. Even more troubling is the fact
that poor-quality PVAs continue to be published in peer-
reviewed journals. The ultimate responsibility to ensure
accuracy and reproducibility of PVAs lies with authors,
but the responsibility to ensure that poor-quality PVAs
are not published rests with the journal editors and re-
viewers. The PVAs published in peer-reviewed journals
are considered reliable by the general public and wildlife
managers. Thus, we call for an increased scrutiny of PVAs,
especially of imperiled species, by journal editors and
reviewers because of the potentially high cost of faulty
conservation decisions based on unreliable PVA results.
Because poor-quality PVAs continue to be published, we
recommend caution while using PVA results in conser-
vation decision making without assessing their quality.
Our evaluation framework can be used to evaluate PVA
quality by journal editors and reviewers and conservation
decision makers.

Acknowledgments

We thank the Department of Wildlife Ecology and Conser-
vation, the Center for Tropical Conservation and Devel-
opment (University of Florida), WildLandscapes Interna-
tional, and University of Florida Biodiversity Institute for
supporting V.C.’s graduate studies. We express our grat-
itude to E. Morton, M. Burgman, F. Jarrad, C. Rondinini,
J. Baum, and 3 anonymous reviewers for many helpful
comments that improved the quality of our manuscript.

Supporting Information

The number of PVA studies published every year from
1990 to 2017 (Appendix S1), criteria used for evaluating
PVA studies (Appendix S2), model averaged estimates of
the regression parameters defining the relationship be-
tween covariates and measure of PVA quality (Appendix
S3), ranking of PVAs evaluated in this study (Appendix
S4), overall quality of PVA studies before and after avail-
ability of PVA guidelines (Appendix S5), number of PVA
studies developed using custom-built and generic pro-
grams 1990–2017 (Appendix S6), results of models test-
ing influence of individual covariates on measures of PVA
quality (Appendix S7), number of PVA studies developed
using various generic programs (Appendix S8), and pro-
portion of studies that incorporated uncertainty in input
parameter from 1990 to 2017 (Appendix S9) are available
online. The authors are solely responsible for the content
and functionality of these materials. Queries (other than
the absence of the material) should be directed to the
corresponding author.

Conservation Biology
Volume 34, No. 1, 2020



Chaudhary & Oli 39

Literature Cited

Agresti A. 2015. Foundations of linear and generalized linear models.
John Wiley & Sons, Hoboken, New Jersey.
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