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Abstract

The Burmese python (Python bivittatus) is now established as a breeding population

throughout south Florida, USA. However, the extent of the invasion, and the ecological

impacts of this novel apex predator on animal communities are incompletely known, in large

part because Burmese pythons (hereafter “pythons”) are extremely cryptic and there has

been no efficient way to detect them. Pythons are recently confirmed nest predators of long-

legged wading bird breeding colonies (orders Ciconiiformes and Pelecaniformes). Pythons

can consume large quantities of prey and may not be recognized as predators by wading

birds, therefore they could be a particular threat to colonies. To quantify python occupancy

rates at tree islands where wading birds breed, we utilized environmental DNA (eDNA) anal-

ysis—a genetic tool which detects shed DNA in water samples and provides high detection

probabilities. We fitted multi-scale Bayesian occupancy models to test the prediction that

pythons occupy islands with wading bird colonies at higher rates compared to representa-

tive control islands containing no breeding birds. Our results suggest that pythons are widely

distributed across the central Everglades in proximity to active wading bird colonies. In sup-

port of our prediction that pythons are attracted to colonies, site-level python eDNA occu-

pancy rates were higher at wading bird colonies (ψ = 0.88, 95% credible interval [0.59–

1.00]) than at the control islands (ψ = 0.42 [0.16–0.80]) in April through June (n = 15 colony-

control pairs). We found our water temperature proxy (time of day) to be informative of

detection probability, in accordance with other studies demonstrating an effect of tempera-

ture on eDNA degradation in occupied samples. Individual sample concentrations ranged

from 0.26 to 38.29 copies/μL and we generally detected higher concentrations of python

eDNA in colony sites. Continued monitoring of wading bird colonies is warranted to deter-

mine the effect pythons are having on populations and investigate putative management

activities.
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Introduction

Highly secretive or cryptic invasive species present unique monitoring challenges. Effective

detection methodologies are necessary to successfully manage elusive invasive species, whether

populations are at low densities or well-established [1, 2]. These detection methods must also

allow researchers to broadly survey the landscape because of the possibility of multiple and

often unknown introduction points [3, 4]. Traditional survey methods, such as traps or visual

and acoustic signs, can be inadequate and result in false negatives and ill-informed manage-

ment decisions [5, 6].

Environmental DNA (eDNA) monitoring has emerged as an effective genetic tool to moni-

tor biodiversity and detect cryptic or low-density species when traditional methods fail [7–12].

The use of eDNA as an indicator of species presence is predicated on the fact that organisms

shed DNA into the environments they inhabit. Environmental DNA monitoring has been used

to determine range limits, track invasion fronts, detect invasive species prior to confirmed visual

sightings, and in some cases to obtain relative estimates of biomass and abundance [13–16].

The Greater Everglades Ecosystem (GEE) in Florida is a vast, shallow marsh with slow lami-

nar sheet flow, and is amenable to the application of eDNA monitoring to detect invasive

aquatic or semi-aquatic species. Ecosystems in southern Florida have high invasibility as well

as significant inputs from the exotic pet trade, and effective detection methods are therefore

important for identifying and managing the frequent introduction of exotic species [17–21].

The Burmese python (Python bivittatus) is a highly cryptic and well-established invasive apex

predator in southern Florida. While detection rates using traditional methods have been very

low (<1%), high detection rates of Burmese pythons using eDNA occupancy analysis (>90%)

have enabled occupancy rates to be quantified in logistically difficult-to-survey habitats like

sawgrass marsh and tree islands far from roads and canals [5, 6, 8, 22].

As novel superpredators (sensu Terborgh [23]), Burmese pythons (hereafter “pythons”) are

exerting negative effects on multiple trophic levels in the GEE. In Everglades National Park,

pythons are linked to dramatic declines in small mammal populations (>90%) over the past

decade(s) [24–26]. Pythons have also negatively impacted mammalian species richness through-

out the GEE [27]. Over 25 species of birds have been found in gut contents of pythons, but the

extent to which pythons are impacting bird populations is unclear [28]. Pythons are likely to pose

a particular threat to long-legged wading bird species that breed colonially on tree islands

throughout the greater Everglades and represent dense, accessible prey. A python telemetry study

in Everglades National Park found that tree islands are common-use areas for pythons [29]. Pre-

dation of wading bird nest contents by pythons in the Everglades was five times the rate of preda-

tion by native nest predators in wading bird colonies in 2017 [30]. Pythons are semi-aquatic,

utilize arboreal habitat, and may engage in wide-ranging foraging for prey–all traits which would

make colonies throughout the Everglades accessible [29, 31–33]. We used eDNA in water sam-

ples as a tool to test the prediction that pythons are attracted to tree islands with bird colonies

compared to representative control islands without breeding birds in the central Everglades. We

found the site-level occupancy estimate to be higher in colony islands (0.88, 95% credible interval

(CRI) [0.59–1.00]) than control islands (0.42, 95% CRI [0.16–0.80]), supporting our prediction,

and we generally detected higher concentrations of python eDNA in colony sites, as well.

Materials and methods

Sampling design

We compared python occupancy estimates and eDNA concentrations in 15 wading bird colo-

nies and 15 islands that had no wading birds nesting (= “control” islands). All samples were
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taken at sites within a 1,000 km2 area of Water Conservation Area 3 in the central Everglades

(25.989444˚, -80.654444˚; Fig 1). The central Everglades is characterized by vast expanses of

sawgrass marsh (Cladium jamaicense) punctuated by tree islands. Tree islands that are domi-

nated by willow (Salix caroliniana) support wading bird colonies during the dry season (Janu-

ary–June). Water moves slowly as laminar sheet flow in a roughly north-south direction across

the nearly flat floodplain [34]. We targeted willow islands (N = 20) associated with pools made

or enlarged by alligators excavating sediment to create refugia in the dry season, known as ‘alli-

gator hole islands’ [35, 36]. Willow trees grow up on the banks of sediment surrounding the

pool. Alligator holes provided a constant, mostly isolated source of water to sample eDNA in

direct proximity to breeding species. These species included Little blue herons (Egretta caeru-
lea), Tricolored herons (Egretta tricolor), Snowy egrets (Egretta thula), and Anhingas (Anhinga
anhinga), which nest in the trees around alligator holes. Colony breeding aggregations ranged

between 8–84 pairs in our sampled alligator hole islands (229–3803 m2). The alligator hole at

the northern end of each island ranged in area from 10–134 m2, with an average area of 47.4

m2. In the tree islands not associated with alligator holes, 25–94 breeding pairs of mostly Great

egrets (Ardea alba) were present in four colonies (2319–16,197 m2) and 11,352 pairs of mostly

White ibises (Eudocimus albus) were present in one outlier (colony B3; 86,295 m2). For each of

the 15 colony islands, we selected a paired control island of similar size, habitat type and geo-

graphic location that was known to be unoccupied by wading bird colonies for a minimum of

4 years using long-term survey data. The five colony-control pairs that did not contain alligator

holes were willow strand islands that were surrounded by water or partially inundated.

To reduce disturbance during times of day with high thermal stress to chicks and eggs, we

generally visited colonies between 8-11AM to take eDNA samples. Most controls were also

sampled before 11AM, except for four control sites visited between 11AM and 1PM. We mea-

sured water temperature for the majority of samples and imputed values for the remaining

10.4% of samples (out of 265 in total) without temperature measurements because of ther-

mometer malfunction (S1 Appendix). We found a positive relationship between sample collec-

tion time and sample temperature (samples with imputed values excluded: Pearson correlation

coefficient = 0.34, t(238) = 5.5, P =< 0.0001, S1 Fig). To reduce potential temperature-related

bias when comparing eDNA concentrations in paired colonies and controls, we excluded

three colony-control pairs in which the median temperature of control samples was at least

8˚C higher than the median temperature of the paired colony sample. This left 12 acceptable

colony-control pairs for comparing eDNA concentrations. We retained all 15 pairs in the

occupancy analysis because we did not expect water temperature at a single point in time to

determine sample or site eDNA presence, although it could influence detection probability

when eDNA is present [42–44]. Our recorded water temperatures ranged from 19 to 35˚C. In

a related camera-trapping study on python predation rates in colonies, the majority of python

detections were nocturnal, and ambient temperatures recorded during detections ranged from

13.9 to 30˚C [30]. Therefore, although eDNA studies involving other ectotherms, like fish,

have found that water temperature can affect eDNA shedding rates (via changes in life-history

states or by increasing metabolic and physical activities) [45–48], we expect the range of tem-

peratures that might impact python activity/behavior (and therefore sample or site presence)

to be more extreme than the ranges we observed at the temporal scale of a day (and which

recurred daily) during our sampling window.

Field collection protocol

We collected 265 water samples (mean 9.2 ± 2.1 [SD] samples at colony sites; mean 8.5 ± 2.3

[SD] samples at control sites) in 1-liter DNase and RNase free Nalgene bottles and added 34
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Fig 1. Burmese python eDNA detections in wading bird colony habitat in Water Conservation Area 3 (WCA-3; red boundary) of the

central Everglades in southern Florida (upper inset). Circle size denotes relative differences in Burmese python eDNA concentration in
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mL of DNA preservative (33 mL 95% ethanol, 1 mL sodium acetate [3M]), and changed nitrile

gloves at each sampling point. We stored each sample in a separate sealed bag. In alligator hole

islands, we took samples at regular intervals of 2–5 m depending on the circumference of the

hole. For islands without alligator holes, we approached each location to within 2 m and then

reached horizontally to collect undisturbed water 5–25 cm below the surface, depending on

the total water depth. At the five colony-control island pairs (1–3,5,8) that did not contain alli-

gator holes, we sampled water at regular intervals (20–30 m) around the island perimeter

(n = 2 non-inundated pairs; 2,8) and along 100–150 m transects downstream or within par-

tially inundated islands, oriented normal (90˚) to the direction of flow (n = 3 pairs; 1,3,5). We

collected water temperature and depth measurements at each point except on a handful of

occasions when the thermometer malfunctioned. We established a negative field control at the

end of each sampling excursion by adding distilled water and DNA preservative to a sterile

bottle. All samples were stored in a -20˚C chest freezer during the field season, then trans-

ported to the USGS lab facility and stored immediately in a -20˚C freezer.

Research activities were carried out in Water Conservation Area 3. Although this is a public

access recreational area, we entered breeding colonies under the authority of Florida Fish and

Wildlife Conservation Commission scientific collecting permit LSSC-15-0004. The field work

did not involve endangered or protected species. The research was conducted under the

approved University of Florida Institutional Animal Care and Use Committee (IACUC) pro-

tocol #201708305, which specifically covered all aspects of this study pertaining to animals. No

field permit was required to collect water samples in WCA-3 at colonies or control sites.

Laboratory analysis

We vacuum-filtered water samples through polyethersulfone filters following Hunter et al.

[49]. All filtration equipment was soaked in a 20% bleach solution (mixed from 6% sodium

hypochlorite stock solution) for 10–15 minutes between usage, rinsed with UltraPure H2O

and dried in a fume hood. After 6–8 uses of the filtration apparatus, we ran a negative filtering

control, consisting of 1 L RNase-free water plus DNA preservative, to check for contamination.

We incubated the filters in cetyl-trimethylammonium-bromide (CTAB) buffer for 4–7 days at

4˚C following Hunter et al. [49] and performed a phenol-chloroform-isoamyl (PCI) DNA iso-

lation following Renshaw et al. [50]. We rehydrated the extracted DNA pellet in 100 μL 1X

Tris-EDTA (TE) Buffer and stored the samples in a -80˚C freezer. Every 6–8 isolations, we per-

formed a negative isolation control by adding three sterile filters to CTAB buffer and isolating

alongside samples.

We performed 1–5 rounds of Zymo Research OneStep Inhibitor Removal kits (IRK) to

remove polymerase chain reaction (PCR) inhibitors such as tannins, phenols, and other acids.

We used sample color to help determine the number of IRK treatments. If a sample was still

inhibited after the first PCR run (determined by the internal positive control, see below), we

administered more IRKs and assessed using droplet digital PCR (ddPCR) again (described

below). When administering IRKs, a trade-off exists between removal of inhibitors and the

possible loss of target eDNA. Hunter et al. [49] found no measurable difference in eDNA con-

centration after one IRK treatment, but because we often had to administer multiple IRKs, we

colony islands (yellow) and control islands (blue). Negative locations, where no python eDNA was detected, are marked with crosses. The

boundary of Everglades National Park (ENP) is marked in green. The blue rectangle in the upper inset marks the study area in WCA-3.

The black inset inside the main map details a cluster of colony and control sites located in the western half of WCA-3. The geospatial data

layers used in this figure were obtained from the Florida Geographic Data Library [37–39], the South Florida Water Management District

[40], and the National Park Service [41].

https://doi.org/10.1371/journal.pone.0213943.g001
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use the term ‘minimum occurrence’ to reflect the possible loss of eDNA during this step. For

samples with multiple ddPCR runs due to additional IRK treatments, we selected the analysis

that contained the highest concentration of python eDNA. We used an exogenous internal

positive control assay (YWHAZ Rhesus Monkey template and PreAmp from Bio-Rad) to test

for the presence of inhibition and differentiate between a true negative or inhibited sample. It

was still possible to detect python DNA molecules in inhibited samples because we measured

inhibition based on known concentrations of the internal positive control (IPC) template pres-

ent in each sample well. Our python assay appeared less susceptible to inhibition than the IPC

assay, possibly due to assay efficiency. Inhibition after applying IRKs was especially prevalent

in colony samples (S2 and S3 Figs).

We performed ddPCR amplification using the QX200 Bio-Rad platform, following Hunter

et al. [51]. ddPCR is thought to be the best tool to cope with high levels of inhibitors found in

our system because each sample is partitioned into 15,000–20,000 nanofluidic droplets in

which PCR occurs independently and endpoint amplification is detected with a fluorescent

probe [52, 53]. In addition, ddPCR enables absolute quantification of molecules and allows

detection down to a single molecule. Our sample PCR mixture included 12.5 μL of ddPCR

supermix from Bio-Rad, 4 μL sample, 150 nM VIC TaqMan probe, 800 nM of each primer,

and the IPC assay (0.20 μL template; 1.0 μL PreAmp) for a total volume of 25 μL. We added

20 μL of the reaction mixture and 70 μL of droplet generation oil to form droplets using the

Bio-Rad QX200 Droplet Generator. We transferred 40 μL of suspended droplets to a 96-well

plate and applied the PCR protocol used by Hunter et al. [51]. Following amplification, each

well was scanned for the presence of amplified target using the QX200 Droplet Reader. The

ddPCR output data were analyzed with Quantasoft v1.7.4.0917. We set thresholds manually

according to recommended specifications from Bio-Rad.

We subdivided each sample into PCR replicates (n = 5) to account for potential PCR error

and to estimate the detection probability of eDNA given sample presence. On each plate we

ran four negative no template control (NTC) replicates (RNase-free H2O) and two positive

control replicates of DNA (0.00085 ng/μL) extracted from python tissue and purified. To

guard against potential contamination and/or false positives [51, 54, 55] we applied a universal

limit of blank (LOB) threshold to the concentration and presence-absence data following

Hunter et al. [56]. We arrived at the LOB value by inspecting all negative controls (field, filtra-

tion, extraction, and NTC controls) for target amplification. The maximum average concentra-

tion of python eDNA we observed in any control was an NTC with a concentration of 0.258

copies/μL. We therefore zeroed all samples at or below this concentration (see S1 Appendix

for analysis of plate-specific standard curves as an alternative). We calculated python eDNA

concentration estimates and confidence intervals following Dorazio and Hunter [57].

Statistical analysis

We fitted occupancy models using the hierarchical Bayesian Monte Carlo Markov Chain

(MCMC) algorithm developed by Dorazio and Erickson [58], which quantified the observa-

tional error of our multi-scale eDNA sampling design in which we 1) sampled multiple sites

within a region, 2) took multiple water samples within each site and 3) subdivided each sample

into multiple PCR replicates to estimate detection probabilities. The hierarchical model esti-

mated a latent site-level probability of eDNA occupancy (ψ), an average conditional probabil-

ity of eDNA occurrence in a single sample (�y), and the conditional probability of detecting

eDNA in each PCR replicate (p), given sample presence. Sites were defined as tree islands.

We ran 100,000 iterations of the MCMC algorithm per model and set burn-in at 5000 to

discard the initial transient region of the chain and obtain precise parameter estimates,
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following Hunter et al. [8]. We inspected the Markov chain of each parameter for visual confir-

mation that it was mixing well in the sample space and likely converging to the posterior distri-

bution ([59]; S2 Appendix). We assessed autocorrelation values to determine whether we were

over-parameterizing the model and checked the Monte Carlo standard errors for each parame-

ter estimate (S2 Appendix). We ran the occupancy analyses in software R v3.4.0, using the R

package eDNAoccupancy, which fit the MCMC algorithm developed by Dorazio and Erickson

[58] for eDNA sampling scenarios.

Model comparison and selection. We conducted an exploratory graphical analysis of the

relationship between eDNA presence at each scale and the covariates described in the supple-

mentary materials (S1 Appendix). The lack of support for most covariates considered in the

exploratory analysis prompted us to include only variables for which we had a priori predic-

tions based on previous empirical studies (Table 1).

In our models we included the categorical variable ‘island type’ as a predictor of site occu-

pancy to test our prediction that pythons are attracted to active wading bird colonies compared

to the control islands. We included collection date to account for potential differences in sam-

ple occupancy across our sampling window. We included time of day (a proxy for sample tem-

perature), and water depth (accounting for site-level differences in temperature and UV-B

exposure) as predictors of eDNA detection probabilities. See Table 1 for explicit predictions

regarding each covariate. In addition to models containing these covariates, we ran a null

intercept-only model.

All numeric variables were scaled and centered. We performed model selection using the

Widely Applicable Information Criterion (WAIC) of a multiscale occupancy model. WAIC is

a Bayesian criterion and uses the full posterior distribution to compute predictive variance and

goodness of fit. Like AIC, models with more parameters are penalized with WAIC’s predictive

variance term and lower values of WAIC indicate models that better fit the data. In the best

model, we compared the posterior probability density curves of site occupancy in colonies ver-

sus controls to determine how much the distributions overlapped, and whether they were

skewed.

Table 1. A priori predictions of covariates included in multi-scale occupancy models to refine estimates of eDNA detection probabilities, sample occupancy, and

site occupancy.

Covariate A priori predictions: Empirical support

Island type

(colony or control)

Pythons are attracted to colony islands because they contain high densities of avian prey. This

would lead to higher eDNA site occupancy rates and concentrations at colonies compared to

representative control islands. We assumed environmental factors impacting eDNA detection

probability did not vary by island type.

Orzechowski et al. [30]: Pythons are novel

predators in colonies

Time of day

(temperature proxy)

The time of sampling negatively covaries with eDNA detection probability due to molecular

degradation at higher temperatures later in the day. Water temperature increased daily across

all sites in conjunction with daily ambient temperature increases. We did not expect the proxy

for water temperature at a single point in time to predict site or sample occupancy.

Tsuji et al. [42]

Strickler et al. [43]

Eichmiller et al. [44]

Barnes et al. [60]

Water depth Water depth served as an indirect measure of long-term differences in UV-B exposure and

water temperature. Shallow sites heat faster, and UV-B rays can penetrate more of the water

column–both causing eDNA degradation. We predicted water depth should positively covary

with detection probability and sample occupancy. Since water depth was correlated with

collection date (see next), we included collection date as a sole predictor of sample occupancy.

Jane et al. [61]

Kiesecker et al. [62]: UV radiation

attenuated within 20 cm water depth

Collection date Daily water temperatures in the marsh gradually increase in conjunction with increasing air

temperatures and water recession in April-May in South Florida. The net temperature increase

is not extreme (approx. 5–10˚C) but could affect sample occupancy or detection probability.

We included depth instead of collection date as a predictor of eDNA detection probability since

both were correlated.

Duever et al. [63];

Romigh et al. [64], Schaffranek and Jenter

[65],S4 Fig

https://doi.org/10.1371/journal.pone.0213943.t001
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Results

We detected python eDNA at 10 of 15 colony sites and 4 of 15 control sites (Table 2). Of 137

water samples taken at colonies, 19 (13.9%) contained python eDNA; in 128 control samples, 5

(3.9%) contained python eDNA (Table 2).

Of the seven models we compared (Table 3), the model with the lowest WAIC score

included island type (β typeControl = -0.19, 95% CRI [-0.99–0.84]; β typeColony = 1.17, 95%

CRI [0.21–5.58]) as a predictor of site occupancy, and collection time (δ = -0.33, 95% CRI

[-0.64– -0.04]) as a predictor of detection probability. The estimated posterior distributions of

python eDNA site occupancy clearly differed between control sites and colony sites (Fig 2).

The posterior for colony sites was left-skewed with a peak at 1, whereas the posterior for con-

trol sites was more symmetrical and centered around an occupancy estimate of 0.42 (Fig 2).

Estimates of detection probability declined with sample collection time, ranging from 0.82 to

0.40 (Fig 3).

The estimated median minimum site eDNA occupancy rate at the 15 colony islands was

0.88 (95% CRI [0.59–1.00]), while the estimate for the 15 control islands was 0.42 (95% CRI

[0.16–0.80]). The differences in python eDNA occupancy between colony and control sites

supported our prediction that pythons are attracted to colonies. Occupied sites were scattered

throughout the 1000 km2 sampling region, although an apparent cluster of occupied colonies

existed in the western part of WCA-3 (Fig 1). We discovered a universally low minimum sam-

ple occupancy rate (�y = 0.14, 95% CRI [0.09–0.20]) suggesting patchiness of naturally occur-

ring python eDNA at all occupied sites [8, 66–68].

eDNA Concentration

The total concentration of python eDNA at each bird colony (mean 3.20 ± sd 9.80 copies/μL,

n = 15) was an order of magnitude higher than the total concentration at each control site

(mean 0.11 ± sd 0.21 copies/μL, n = 15). At 8 of 9 acceptable pairs where we detected python

eDNA, colonies contained higher eDNA concentrations than controls (Fig 4). The mean dif-

ference in concentration at colonies compared to paired local controls (mean 3.77 ± sd 6.99

copies/μL) was not significant (paired t-test, t(11) = -1.19, p = 0.26). The total amount of

python eDNA detected at any site ranged from 0–38.6 copies/μL (Fig 4). Python eDNA con-

centrations were within a similar range at all island types (alligator hole or non-alligator hole

islands [pairs 1–3, 5, 8]), except for one sample at colony B6. This was an alligator hole site,

Table 2. Naïve and model estimates of minimum site and sample occupancy, average detection probability, and eDNA concentration estimates at colony and con-

trol sites.

Site Positive/

total samples

(% positive)

Positive/

total sites

Averagea total [eDNA] copies/μL Minb/max sample [eDNA] copies/μL C (95% CRI) �θ (95% CRI) �p (95% CRI)

Colonies 19/137

(13.9%)

10/15 3.20 0.26/

38.29

0.88 (0.59–

1.00)

0.14 (0.09–

0.20)

0.61 (0.48–

0.73)

Controls 5/128

(3.9%)

4/15 0.11 0.26/

0.39

0.42 (0.16–

0.80)

Environmental DNA concentration abbreviated [eDNA] and measured in copies per μL. Estimates of C (site-level python eDNA occupancy probability in colonies and

controls), �y (average conditional probability of eDNA occurrence in a single sample) and �p (eDNA detection probability, averaged over all sites) are from the top ranked

model in Table 3. 95% credible intervals (CRI) are reported for each estimate. Colonies were defined as active wading bird breeding sites and controls were empty

islands of similar size and geographic location.
aIncluding zeros
bExcluding zeros

https://doi.org/10.1371/journal.pone.0213943.t002
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which contained an outlying concentration (38.29 copies/μL) compared to the rest of the sam-

ples. We found that eDNA concentration declined with sample water temperature, as expected

(S5 Fig).

Discussion

We quantified occupancy and detection rates of python eDNA at tree islands in the central

Everglades, a critical habitat for breeding wading birds. The estimate of python eDNA site

occupancy was higher in colonies than control islands, suggesting that pythons are attracted to

wading bird colonies during the wading bird breeding season. A low estimate of sample occu-

pancy indicated spatial heterogeneity of eDNA and could also in part be reduced by high levels

of PCR inhibitors throughout our sampling locations. We found a strong relationship between

our eDNA detection probability and temperature proxy in occupied samples, which corrobo-

rates the results of other studies demonstrating the effect of temperature on eDNA degradation

[42–44].

The high python eDNA occupancy rates we observed in colonies were notable because the

Everglades is not thought to be a hospitable environment for eDNA. eDNA likely degrades

quickly in the Everglades because the water is shallow, warm, acidic, and contains abundant

microbial fauna, all of which degrades eDNA [42, 43]. In addition, sun exposure provides con-

stant UV radiation during the day. Acidic pH in conjunction with water at 35˚C and UV expo-

sure has been demonstrated to reduce longevity of eDNA to 8 days or less [43]. The rapid

break-down of eDNA in harsh conditions, such as those found in the Everglades, therefore

enhances the temporal resolution of a positive eDNA detection. Based on research in other sys-

tems, the typical lifespan of eDNA is likely 1–27 days [69–71].

The spatial resolution of a positive eDNA detection in the Everglades in part depends on

water flow velocity along with eDNA lifespan. Average flow velocities in slough (open-water

marsh) habitat have been estimated at 173 m day-1 in mid-January, when bird colonies start to

form during the dry season [34]. The majority of our sites were alligator hole islands, which

consisted of a sun-exposed pool of stagnant water with no outflow at the time of sampling.

Inflow from the slough was mostly cut off, except for an alligator path typically at the north

apex of the island. The spatial resolution for detecting recently shed python eDNA should be

especially high in these locations. In addition, water flow was strongly curtailed across our

sampling region as a result of the rapid recession in water levels in March and April. Harvey

et al. [34] found a strong reduction in mean flow velocity in conjunction with receding water

levels in January onward. For colony-control pairs sampled around the island perimeter (n = 2

Table 3. Model comparison using the Widely Applicable Information Criterion (WAIC).

Model WAIC Predictive variance Lack of fit

(1) ψ(type)θ(.)p(time) 41.85 6.96 34.89

(2) ψ(type)θ(.)p(.) 42.14 6.00 36.14

(3) ψ(.)θ(.)p(.) 42.17 6.03 36.14

(4) ψ(type)θ(date)p(.) 42.22 6.08 36.14

(5) ψ(type)θ(date)p(time) 42.37 7.34 35.03

(6) ψ(type)θ(.)p(time + depth) 42.70 8.04 34.66

(7) ψ(type)θ(.)p(depth) 42.94 7.44 35.50

Models are listed in order of increasing WAIC score. The components of each WAIC score—predictive variance and

lack of fit—are also reported.

https://doi.org/10.1371/journal.pone.0213943.t003
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pairs) or those that were partially inundated willow strand islands (n = 3 pairs), we therefore

assumed upstream contamination of eDNA was negligible in April and May.

Given the likely brief lifespan of eDNA and its short travel distance during our sampling

period, the high site occupancy estimates in this study appear conservative. In addition to pres-

ence, the concentration of eDNA (hereafter [eDNA]) may also allow some inference regarding

site usage. DNA molecules are shed into the environment in a clumped state, and as time

elapses, they disperse, become fragmented and destroyed, or filtered out of the water. Longer

eDNA fragments, that are more likely to contain the assay barcode, degrade faster than short

fragments of eDNA [72]. Pilliod et al. [15] found that removing animals from a flowing stream

drastically reduced [eDNA] detected within an hour. Similarly, in other studies involving

closed systems, [eDNA] steadily declined over time after removing study organisms from

experimental tanks [69, 73]. A relationship between [eDNA] and relative animal abundance

has also been demonstrated in other systems where abundance was known using traditional

methods or calibrated with experimental eDNA trials in tanks [13, 74]. Given these findings, it

appears reasonable that a sample with high [eDNA] may indicate higher abundance or more

recent presence of an animal (barring the complication of dead animal eDNA sources) with

greater spatiotemporal precision than a sample containing one or two detected molecules.

[eDNA] can be highly heterogeneous, however. The eDNA in the sample containing the outly-

ing [eDNA] from site B6 could have come from a highly concentrated and localized release of

Fig 2. Estimated posterior distributions of site occupancy (ψ) in colony versus control sites.

https://doi.org/10.1371/journal.pone.0213943.g002
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gametes or feces from a single animal, for example, or alternatively from a dead python in the

area. We suggest the need for field-based trials with live pythons in a natural system to further

explore the strength of this relationship between heterogenous [eDNA] and abundance or

recent presence in an open system.

Our detection assay appeared to be robust in the presence of inhibitors. Overall, PCR inhi-

bition as measured with the exogenous IPC was quite high in our samples. This meant our

ability to detect python eDNA molecules was diminished since inhibitors impede or prevent

the replication of target eDNA, which is essential for detection. High levels of bird guano were

apparent from the algal blooms frequently observed in colony alligator holes, and never

observed in control islands [75]. Bird guano contains calcium, an inhibitor of PCR [76]. The

fact that we detected the highest concentrations of python eDNA in colonies, despite the possi-

bility of generally higher levels of inhibition in colonies, suggests our estimates of eDNA con-

centration were conservative relative to those in controls.

We conclude eDNA monitoring is useful for detection of python presence in the Everglades

ecosystem and is the most powerful and quantitatively accurate technique currently available,

especially in habitats where inaccessibility bias is high and the crypticity of pythons is aug-

mented by impenetrable tree island vegetation. The inference we draw from our data is that

Burmese pythons are widely distributed across the central Everglades in proximity to active

bird colonies. Taken in conjunction with evidence of repeated python predation of bird nests

by multiple individual snakes at some colonies [30] and observations of a telemetered python

performing directed movement towards a colony (B. Smith, USGS Biologist, 25 May 2018, per-

sonal communication), it seems likely that pythons are preferentially attracted to wading bird

colonies as sources of prey. Continued monitoring is necessary to determine whether python

management in wading bird colonies will be needed to protect these avian species.

Fig 3. Estimated relationship between detection probability and sample collection time (temperature proxy).

https://doi.org/10.1371/journal.pone.0213943.g003
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Fig 4. Total concentration of Burmese python eDNA at colony (dark grey bars) and control (light grey bars) pairs with 95%

confidence intervals. Pair 6 is plotted on a separate axis because the colony concentration is much higher than any other site. At pairs 1,

3 and 8, (§) any differences in concentration were likely subject to temperature-related bias.

https://doi.org/10.1371/journal.pone.0213943.g004
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