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Abstract 
Context  The spatial extent at which landscape vari-
ables most strongly influences wildlife populations 
(i.e., scale of effect) is of key importance to ecology 
and conservation. Many factors can influence scales 
of effect, but these relationships are poorly under-
stood. In particular, the way scales of effect vary with 
different landscape metrics has not been extensively 
tested.
Objectives  Our study tested whether metrics of 
landscape configuration have wider or narrower 
scales of effect than habitat composition. We also 
examined how species traits and landscape context 
influence the magnitude of differences in scales of 
effect between metrics.
Methods  We calculated scales of effect for four met-
rics of habitat configuration and one metric of com-
position directly from species presence/absence data 
in online repositories including 102 species of forest 
mammals from 33 studies across the globe. We then 

compared the magnitudes and variability of scales of 
effect using Hedge’s g.
Results  Two metrics of configuration (flux and 
patch density) had significantly wider scales of 
effect than habitat composition, while the differences 
between the other two metrics of configuration and 
composition were not statistically significant. The 
magnitude of the difference between metrics var-
ied among samples, but none of the factors tested 
explained this variability.
Conclusions  For forest mammals, the scale of 
effect of a configuration metric can be expected to be 
15–20% wider than a composition metric. However, 
this pattern may not hold for metrics of configuration 
that do not quantify attributes of the landscape that 
mediate species dispersal or that are correlated with 
the metric of composition.

Keywords  Scale of effect · Spatial extent · 
Dispersal · Landscape metric

Introduction

The relationships between attributes of the landscape 
and species’ distributions and population dynam-
ics are often scale dependent (Wines 1989; Levin 
1992), making the scale at which researchers measure 
these landscape attributes important for ecological 
research, land management, and conservation. Land-
scape connectivity is one of these scale-dependent 
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attributes that mediates movement and dispersal of 
wildlife across heterogeneous landscapes (Taylor 
et  al. 1993; Crooks and Sanjayan 2006). Landscape 
connectivity can promote movement that expands 
individuals’ access to resources across their home 
ranges and across wider scales by contributing to 
successful dispersal, demographic rescue, and patch 
colonization (Hanski 1998; Elmhagen & Angerbjorn 
2001). Structural connectivity of a landscape is com-
monly measured with metrics of habitat composition 
and configuration (Calabrese & Fagan 2004; Prugh 
2009), which can be refined to represent functional 
connectivity by incorporating movement informa-
tion that is specific to a species (Crooks and Sanjayan 
2006). Habitat composition describes the proportion 
and diversity of land cover types (e.g., percent forest 
cover); whereas configuration describes the shape and 
spatial arrangement of this cover (e.g., average inter-
patch distance). Habitat composition can increase 
landscape connectivity by increasing the proportion 
of suitable habitat, and consequently the number of 
traversable paths on the landscape and the probability 
of an individual’s survival during dispersal (Fahrig 
2013). Habitat configuration can increase landscape 
connectivity independently of habitat composition 
by influencing the spatial arrangement of patches 
that can ultimately form corridors, stepping stones, 
and redundant paths (Bierwagen 2007; Fletcher et al. 
2014; Herrera et al. 2017). As such, metrics of habitat 
configuration and composition provide complemen-
tary perspectives on the relationship between land-
scapes and the population dynamics and distributions 
of organisms occupying these landscapes. However, 
the scale (i.e., spatial extent) at which these metrics 
are quantified is crucial to understand and accurately 
assess how aspects of the landscape, such as connec-
tivity, shape ecological processes (Jackson & Fahrig 
2015). Thus, measurements of the landscape need to 
be made at an appropriate scale. This scale may differ 
in response to numerous factors, including between 
metrics of habitat configuration and composition.

The spatial extent at which a landscape attribute 
most strongly correlates with a biological variable 
of interest is known as the “scale of effect” (Holland 
et al. 2004; Fig. 1). In the context of scale of effect, 
these biological variables can include occurrence, 
abundance, or genetic diversity; however other vari-
ables such as community-level biodiversity can also 
be biological variables of interest. The assessment 

of a landscape attribute at a scale other than its scale 
of effect can decrease the statistical strength or even 
change the nature of this landscape-wildlife relation-
ship (De Knegt et al. 2010; Martin et al. 2016). For 
example, the correlation between patch isolation and 
the proportion of woody matter in the diet of howler 
monkeys varied from minor (r2 < 0.2) to strong 
(r2 > 0.8) depending on the scale at which patch iso-
lation was measured (Ordóñez-Gómez et  al. 2015). 
Even studies that test multiple scales can miss the 
scale of effect by testing a range of scales that does 
not extend near or far enough from the focal loca-
tions or has too wide of gaps between scales (Jack-
son & Fahrig 2015). The quantification of landscape 
metrics at too small a scale likely will fail to account 
for the influence of factors and processes occurring 
at broader scales such as access to distant resources, 
immigration from distant sources, or distant anthro-
pogenic pressures (Jackson & Fahrig 2015). Simi-
larly, the quantification of landscape metrics at too 
wide a scale will likely include extraneous infor-
mation thereby increasing the uncertainty in the 
observed relationship between the landscape metric 
and biological response variable (Jackson & Fahrig 
2015). The ability to approximate scale of effect a 
priori would improve studies aimed at evaluating how 
landscape attributes mediate ecological processes by 
reducing the chance of quantifying landscape attrib-
utes at an incorrect scale. Similarly, a priori approxi-
mations would support key landscape level decisions 
(e.g., in the design of corridors or reserve networks) 
when empirically derived scales of effect are lacking. 
However, current understanding of the main factors 
that mediate scale of effect is nascent, and many have 
not been assessed empirically.

Factors related to species traits and landscape 
attributes (i.e., regional context) are predicted to 
mediate scales of effect (Miguet et al. 2016) because 
the scale of effect relates to the spatial extent over 
which species perceive and interact with the land-
scape (Nathan et  al. 2008). The species traits pre-
dicted to mediate scale of effect are predominantly 
associated with mobility (e.g., dispersal distance, 
home range size, and body size) and demography 
(e.g., reproductive rate; Jackson and Fahrig 2012; 
Miguet et  al. 2016). For example, large bodied spe-
cies are predicted to have larger scales of effect than 
smaller species across response variables (e.g., demo-
graphic trends, species occurrence, genetic diversity) 
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because they interact with a wider extent of the 
landscape via larger home ranges and longer disper-
sal distances (Thornton & Fletcher 2014). Simula-
tion studies provide strong support for the influence 
of species traits on scale of effect (Jackson & Fahrig 
2012; Ricci et  al. 2013), but most empirical studies 
fail to detect this pattern (Jackson & Fahrig 2012, 
2015; Miguet et al. 2016; Galán-Acedo et al. 2018). 
Reviews of empirical studies largely attribute this 
failure to suboptimal measurement of scales of effect, 
for example testing too narrow a range of scales or 
too few scales (Ricci et  al. 2013; Jackson & Fahrig 
2015; Miguet et  al. 2016). However, other factors 
that influence scale of effect such as the regional con-
text of the study site, the biological response vari-
able researchers selected (e.g., species occurrence 
vs. species richness), and the landscape variable the 
researchers measured also could complicate detect-
ing a relationship between species traits and scales 

of effect in across-study comparisons (Martin 2018; 
Moraga et al. 2019; Amiot et al. 2021). A variety of 
factors related to regional context such as geographic 
location, regional fragmentation, or climate could 
increase or decrease scale of effect for biological 
response variables, in particular occurrence, because 
these factors influence processes such as dispersal 
and population dynamics that mediate species’ dis-
tributions. For example, scales of effect are predicted 
to be wider in regions with a greater proportion of 
habitat because increased habitat facilitates longer 
dispersal movements (Miguet et  al. 2016). Scale 
of effect also may vary with the landscape attribute 
used as an explanatory variable. For example, met-
rics that describe landscape attributes that promote 
long-distance dispersal (e.g., via enhancing landscape 
connectivity) are predicted to have a wider scale of 
effect than a metric that describes a landscape attrib-
ute that primarily impacts smaller-scale movements 

Fig. 1   Simulated repre-
sentation of scale of effect. 
Green areas represent 
forested patches; white 
background indicates non-
forest habitat. Black points 
indicate sample locations 
where a biological response 
variable was measured 
(e.g., species distribution, 
abundance, biodiversity). 
Black concentric circles 
represent different spatial 
extents at which a landscape 
explanatory variable could 
be quantified (e.g., patch 
density, percent forest 
cover, interpatch distance). 
The red circle indicates 
the spatial extent at which 
the explanatory landscape 
variable most correlates 
with the biological response 
variable
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within home ranges related to foraging and breeding 
(Miguet et  al. 2016). This difference between scales 
of effect occurs because dispersal movements are 
often substantially longer than home range diameters. 
Although the effects of species traits on scale of effect 
have been examined across a range of taxa, consid-
erably less is known about how scales of effect dif-
fer among landscape attributes such as habitat com-
position and configuration (Jackson & Fahrig 2015; 
Miguet et al. 2016).

Some researchers have hypothesized that the 
scale of effect of habitat amount (a metric of habi-
tat composition) should be larger than that of habi-
tat fragmentation (i.e., metrics of habitat configura-
tion) across biological response variables (Miguet 
et al. 2016). This hypothesis is rooted in the idea that 
increasing habitat amount improves dispersal suc-
cess by reducing mortality during dispersal; whereas 
increasing habitat fragmentation alters resource avail-
ability at the scale of an individual’s home range 
by determining the amounts of core and edge habi-
tat (Fahrig 2013). Simulations support this hypoth-
esis (Jackson & Fahrig 2012), but empirical data 
are equivocal (Jackson & Fahrig 2015; Miguet et al. 
2016). Alternatively, habitat configuration could have 
a wider scale of effect because habitat configuration 
could more directly promote species dispersal via cor-
ridors, stepping stones, and providing redundant path-
ways (O’Brien et al. 2006; Ferrari et al. 2007; Saura 
& Rubio 2010; Fletcher et al. 2018a, b), whereas hab-
itat composition more directly promotes breeding and 
foraging success at the home range level via resource 
abundance. Finally, due to the multifaceted nature of 
configuration, whether configuration or composition 
have a wider scale of effect could vary depending on 
which metrics are being compared. A previous review 
of five empirical studies containing 26 comparisons 
between scales of effect of composition (primarily 
habitat amount) and configuration (primarily patch 
density) reported a nearly equivalent number of cases 
of configuration having a wider scale of effect than 
composition and vice versa (Miguet et  al. 2016). 
These results may be inconclusive because the empir-
ical studies reviewed might have tested an insufficient 
range and precision of scales, thus potentially missing 
the scale of effect. Also, these studies varied by many 
factors important for predicting scale of effect such 
as biological response variable (Miguet et  al. 2016; 
Martin 2018), landscape metrics (Miguet et al. 2016), 

and land-cover maps (Amiot et  al. 2021). Overall, 
uncertainty remains as to whether habitat configura-
tion or composition has a wider scale of effect.

We compare these competing hypotheses by con-
ducting a meta-analysis of primary data to answer 
the question: do metrics of habitat configuration or 
composition have a wider scale of effect on species 
occurrence? Answering this question could support 
one of three competing hypotheses: (1) metrics of 
composition have wider scales of effect, (2) metrics 
of configuration have wider scales of effect, or (3) 
the metric assessed determines whether configuration 
or composition has a wider scale of effect. Corollary 
to our primary research question, when there was a 
significant difference between two metrics’ scales of 
effect, we conducted an ad-hoc assessment to identify 
factors that could potentially explain this difference. 
Our experimental design overcomes common issues 
in studies of scale of effect in that we tested a wide 
range of scales, used consistent methods to estimate 
all scales of effect, and assessed a wide range of geo-
graphic locations.

Materials and methods

Study system

To assess the extent that metrics of habitat configura-
tion and composition differ in their scales of effect, 
we conducted a meta-analysis of mammal distribu-
tions in fragmented forest landscapes. Mammals are 
appropriate taxa to test our hypothesis because they 
are well studied, many published datasets are avail-
able for meta-analysis, and the mechanisms by which 
landscapes mediate their demographic processes are 
relatively well-known compared to other taxa (Pres-
ley et  al. 2019). Mammals also vary widely in spe-
cies traits, facilitating the analysis of how these 
traits might mediate the magnitude of the difference 
between scales of effect (Supplementary Information 
(SI), Appendix 1).

We narrowed our analysis to forest mammals, 
namely those with forest listed as suitable habitat in 
IUCN Redlist (SI, Appendix 1; IUCN 2021), because 
they are more sensitive to changes in habitat composi-
tion and configuration than species with other habitat 
preferences (Keinath et  al. 2017). Additionally, our 
analysis required calculation of scales of effect using 
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a consistent source of land cover information for all 
datasets (Amiot et  al. 2021). The availability of a 
global forest cover database contributed to our selec-
tion of forest species, as opposed to other habitat pref-
erences for which land cover data are less available. 
We excluded migratory species (i.e., most individuals 
regularly migrate large distances) because their distri-
butions are influenced by landscapes not included in 
our analysis. We determined migratory behavior from 
IUCN information (SI, Appendix 1).

Literature review and data extraction

We calculated a standardized difference between 
scales of effect of configuration and composition 
directly from primary data. Extraction of effect sizes 
from existing literature was unfeasible because few 
studies compare scales of effect between metrics of 
landscape composition and configuration. Addition-
ally, studies use different methods such as landscape 
metrics, buffer size ranges, and explanatory variables. 
Calculation of scale of effect directly from primary 
data allowed us to analyze the difference between 
scales of effect with a consistent set of methods to 
reduce among-study variability (Simmonds et  al. 
2005; Koricheva et al 2013). Our study is the first to 
compare a large number of scales of effect from wild-
life populations around the globe using consistent 
methods.

We searched for primary data in January 2021 in 
Dryad, Web of Science (“Data Papers” only), and 
Knowledge Network for Biodiversity repositories. 
We used the search terms “wildlife”, “mammal”, 
“camera trap”, and “habitat fragmentation” in sepa-
rate searches. “Camera trap” was included because 
these studies are particularly well suited for scale of 
effect analysis due to their ability to detect mammals 
(Tobler et  al. 2008), and because they often include 
numerous sample locations. We found 2129 datasets 
combined across the three repositories. In primary 
data meta-analyses such as ours, the term “dataset” 
is equivalent to “study” in the traditional meta-anal-
ysis of published effect sizes. From the initial 2129 
results, we selected datasets that reported a measure 
of distribution (i.e., presence/absence, abundance, or 
sign detection rate) and had greater than 10 sample 
locations for at least one species of forest mammal. 
Also, we selected datasets that occurred in landscapes 
fragmented at the scale of the study area (e.g., the 

forest cover surrounding all study sample locations 
did not comprise one forest patch) because many met-
rics of habitat configuration or composition would 
not vary in a homogeneous landscape. Finally, we 
selected datasets for which geographic coordinates 
of sample locations could be obtained directly from 
the dataset or by contacting the authors. The type of 
biological response variable can influence scales of 
effect (Miguet et al. 2016; Moraga et al. 2019). There-
fore, we converted abundance and sign rate to pres-
ence/absence in datasets that reported these metrics. 
A species was considered present if it had more than 
one detected individual or sign and absent otherwise. 
We excluded species that were present in all sample 
locations, and species present or absent in only one 
sample location in a dataset because calculating scale 
of effect requires variability in the response variable 
(i.e., species presence/absence). From the initial 2129 
datasets, 33 met our criteria for inclusion (SI, Appen-
dix 2, Appendix 3). Of these 33 datasets, 25 reported 
information for multiple species (mean = 5.1; 
range = 1, 16). A total of 107 unique species was rep-
resented with 26 species measured in multiple data-
sets. We assessed species that were included in multi-
ple datasets separately because sampling methods and 
landscape contexts (which can affect scale of effect) 
differed among these datasets. Thus, the basic unit of 
analysis for our study was species per dataset, totaling 
163.

For each dataset, we obtained a binary forest/non-
forest map from Google Earth Engine (Gorelick et al. 
2017), specifically, the Global PALSAR-2/PALSAR 
Forest/Non-Forest Map (Shimada et  al. 2014). This 
map has 25-m pixel spatial resolution, defines forest 
as more than 10% canopy cover, and represents forest 
cover at year 2010. Among the datasets in our study, 
forest loss between 2010 and dataset publication year 
averaged 4% and never exceeded 8%. Forest cover loss 
was low in our selected datasets because these areas 
were located in previously deforested/fragmented 
regions, not on frontiers of deforestation. We did not 
assess forest cover gain due to the lack of accessible 
data past the year 2012, but we expect it to be simi-
larly low or lower than forest cover loss because total 
forest area is decreasing globally (d’Annunzio et  al. 
2015). Therefore, we expect that forest cover infor-
mation from a more precise date would not signifi-
cantly change our measured metric values. We used 
the PALSAR map because of its accessibility, global 
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coverage, and fine-scale spatial resolution. Using one 
consistent source of land cover information to gener-
ate scale of effect estimates across all datasets was 
important as different land cover maps could add 
variability to scale of effect estimates (Amiot et  al. 
2021). Thus, even though calculating scale of effect 
with more detailed forest cover maps would be pref-
erable for assessing individual species, we prioritized 
comparability between species and datasets by using 
one common source of land cover data.

Scale of effect calculation

We selected five metrics for scale of effect compari-
son. Four of these were metrics of habitat configu-
ration: flux, patch density, mean Euclidean nearest 
neighbor distance (mean ENN), and cohesion. We 
tested multiple metrics of configuration because con-
figuration is multifaceted and no one metric can cap-
ture all aspects of configuration. In contrast, percent 
forest cover captures habitat composition in a binary 
forest/non-forest landscape.

Flux is the summed probability of dispersal 
between all patches in a landscape by a species 
(Urban & Keitt 2001). We selected flux because it 
incorporates movement information specific to a spe-
cies (i.e., represents functional connectivity). Flux 
utilizes graph theory to effectively quantify the con-
tribution of each stepping stone on the landscape to 
overall connectivity (Foltête 2019). Patch density is 
the number of forest patches per square kilometer. We 
selected patch density as a computationally efficient 
index of habitat fragmentation (Trani & Giles 1999). 
Patch density is also one of the most widely used met-
rics of habitat configuration in scale of effect research 
(Miguet et al. 2016). Mean Euclidean nearest neigh-
bor (mean ENN) is the average of the shortest edge-
to-edge distance between a forest patch and its nearest 
neighboring patch for all patches across a landscape. 
Mean ENN measures an aspect of landscape configu-
ration that is not well captured by the other metrics in 
our study. Cohesion represents the extent that forest 
pixels are clustered together versus evenly spread out 
(McGarigal 2015). We selected cohesion as a metric 
of habitat aggregation that has been shown to pre-
dict animal dispersal (Schumaker 1996). Percent for-
est cover is the proportion of a focal landscape that 
is covered by forest. We selected percent forest cover 
as our only metric of habitat composition because it 

is the only meaningful metric of habitat composition 
in a binary landscape (SI, Appendix 4). Additionally, 
other scale of effect studies often use percent for-
est cover as the only metric of habitat composition 
(Bosco et al. 2019; Miguet et al. 2016; D. H. Thorn-
ton & Fletcher 2014). These five metrics resulted 
in four scale of effect comparisons: flux with forest 
cover, patch density with forest cover, mean ENN 
with forest cover, and cohesion with forest cover.

To make these scale of effect comparisons, we 
first calculated each of the five metrics in 63 con-
centric buffers of increasing radii surrounding all 
sample sites in each dataset. The first buffer was set 
at a 100-m radius surrounding a sample site, a buffer 
size much smaller than is typically considered for cal-
culating scale of effect. An excessively small buffer 
size was chosen to minimize the risk of missing 
the true scale of effect. The radii of the subsequent 
nine buffers increased by 100-m intervals. After 
the first ten buffers (i.e., up to 1000-m radius), we 
increased the buffer radii to 500-m intervals because 
in larger landscapes smaller changes in buffer sizes 
(i.e., 100-m radii intervals) would produce nearly 
identical metric values as the previous buffer size. 
Similarly, we increased the buffer radii intervals to 
1000-m starting at 25,000-m until a final buffer radius 
of 30,000-m. Thus, we used a total of 63 buffers 
(range = 100–30,000-m) around each sample location 
in every dataset to calculate our five landscape met-
rics. These buffer sizes ensured a sufficient range and 
precision of scales with which to identify a scale of 
effect and could be computed in a reasonable amount 
of time. This range of 63 buffer sizes is much wider 
and has a finer resolution than most other efforts to 
identify scale of effect (Thornton & Fletcher 2014; 
Jackson & Fahrig 2015; Miguet et al. 2016). Sample 
locations in a dataset were often within 30,000-m of 
each other; however overlapping buffers do not affect 
calculation of scale of effect (Zuckerberg et al. 2012).

To select a buffer size as the scale of effect for 
each species within a dataset, we compared the AIC 
scores of 63 generalized linear models with binomial 
distributions (Huais 2018). These models contained 
species presence/absence as the response variable 
and the landscape metric measured at the different 
buffer sizes as the explanatory variable. The buffer 
radius that produced the model with the lowest AIC 
score was identified as the scale of effect (SI, Appen-
dix 4; Holland et al. 2004). We produced a measure 
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of variability for each scale of effect estimate by 
bootstrapping sample locations. First, we randomly 
selected sample locations from a dataset with replace-
ment until we had as many sample locations as the 
original dataset (SI, Appendix 4; Efron and Gong 
1983). As such, some sample sites were repeated and 
others excluded for a given iteration. We then used 
this set of random sample sites to generate one scale 
of effect estimate. To avoid including random sample 
location combinations for which a given landscape 
metric did not have a significant relationship with 
species presence/absence, we only considered buffer 
sizes for which the beta-coefficient of the landscape 
metric had a p-value < 0.05. If an iteration did not 
produce any buffer sizes with a p-value < 0.05, that 
iteration was skipped. We repeated this process until 
a total of 1000 statistically significant scales of effect 
were recorded for each species in each dataset (SI, 
Appendix 4). Post hoc analysis did not reveal any cor-
relation between the number of repetitions needed to 
achieve 1,000 statistically significant scales of effect 
and the variability in a sample’s scale of effect (SI, 
Appendix 7).

Scale of effect analysis

We used the mean and standard deviation from the 
1,000 scales of effect produced by bootstrapped com-
binations of sample sites to calculate Hedge’s g. A 
value of Hedge’s g was calculated for each of the four 
comparisons between scales of effect of configuration 
and composition. Hedge’s g is the difference between 
two means divided by their pooled standard deviation 
(SI, Appendix 4). As a rule of thumb, a Hedge’s g of 
0.2 represents a small effect, 0.5 a medium effect, and 
0.8 a large effect (Cohen 1988); however, this should 
be interpreted in the context of what is being com-
pared (e.g., a Hedge’s g of 0.2 reducing child mortal-
ity is an important effect; Durlak 2009).

We assessed whether a metric of habitat configu-
ration had a wider scale of effect than composition 
by calculating the overall effect and associated 95% 
confidence interval of meta-analysis models. These 
models contained Hedge’s g as the response variable 
and no explanatory variables. We created a separate 
model for each of the four combinations of configu-
ration/composition. To account for potential lack of 
independence among effect sizes for multiple species 
within the same dataset (e.g., shared regional context 

and sampling methods), we compared three-level 
mixed effect models designed for meta-analyses that 
account for variance at three levels: sample, within 
dataset, and between dataset against similar models 
that account for variance at two levels: sample and 
between dataset, and selected the model structure 
with the lowest AIC score (SI, Appendix 4; Cheung 
2019; Gucciardi et  al. 2021). Once we selected 
a model structure, we considered the difference 
between two metrics’ scales of effect as significant 
if the 95% confidence interval of a model’s overall 
effect did not include zero.

We also tested the influence of seven explanatory 
variables on the magnitude of the difference between 
scales of effect in cases where the difference between 
scales of effect was significant. This was an explora-
tory hypothesis generating analysis rather than a 
hypothesis testing approach (i.e., detailed examina-
tion of the effect of one variable; Tredennick et  al. 
2021). We tested five species traits: body mass, habi-
tat preference, trophic level, volant/non-volant, and 
home range size; and two variables related to the 
study area: geographic location and regional forest 
cover. We obtained body size from the PanTHERIA 
database (Jones et al. 2009), or from published liter-
ature in the rare instances a species’ body mass was 
not present in PanTHERIA. We obtained home range 
sizes from the literature and averaged home range 
estimates if multiple studies existed. We designated 
a species as a forest specialist if forest was the only 
habitat listed as suitable in the IUCN Redlist (IUCN 
2021), and as a generalist if other habitat types were 
suitable. These are not strict definitions, but rather 
indicate a species’ ability to survive in multiple habi-
tat types. We calculated regional forest cover as the 
percent forest cover across the entire study region for 
a dataset (i.e., 30-km buffer surrounding all sample 
points), and thus all species in a dataset shared the 
same value. Because regional forest cover is bound 
by an upper and lower limit (0 and 100), we tested 
a quadratic form of this variable. We compared AIC 
scores of two models containing only regional forest 
cover: one with a linear form, and another with the 
quadratic form. If the AIC score of these models dif-
fered by > 2, we used the form with the lowest AIC 
for the full model of regional forest cover contain-
ing all explanatory variables. We selected the sim-
pler linear form if models did not vary by > 2 AIC. 
For the geographic location of the study area, we 
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incorporated a binary variable indicating whether the 
dataset was collected in tropical or temperate lati-
tudes (i.e., ± 23° from the equator). The continuous 
variables in our study (i.e., body mass, home range, 
and regional forest cover) were centered and scaled. 
We considered a variable to have a significant influ-
ence on the magnitude of the difference between con-
figuration/composition scales of effect if its beta coef-
ficient p-value was < 0.05. We used separate models 
for the four configuration/composition combinations.

Results

Difference between configuration and composition 
scales of effect

Habitat configuration had a significantly wider 
scale of effect than habitat composition in some 
cases, depending on the metric used for configu-
ration. Flux and patch density had significantly 
wider scales of effect than forest cover (Hedge’s 
g (g) = 0.34 ± 0.09 standard error (SE), and 
g = 0.26 ± 0.09 SE, respectively; Fig. 2). In contrast, 
scales of effect of mean ENN and cohesion were 
not significantly different from the scale of effect 
of forest cover (g = 0.10 ± 0.12 SE and 0.10 ± 0.08 
SE; Fig.  2). In these four comparisons, we esti-
mated overall effects with models that incorporated 
heterogeneity at three levels (i.e., sample, within 
dataset, and between datasets) because this model 

structure was more strongly supported than models 
incorporating heterogeneity at two levels (i.e., sam-
ples and between datasets; ΔAIC > 1,000). Tests of 
heterogeneity among these datasets indicated that 
variation was significantly greater than expected 
from sampling variance alone and, thus, adequate 
for these meta-analysis models (Cochran’s Qflux 
(Q) = 4.6 × 104, Qpd = 5 × 104, Qmean ENN = 5.4 × 104, 
Qcohesion = 3.3 × 104; all four p < 0.0001).

Factors influencing the magnitude of the difference 
between scales of effect

Neither species traits (i.e., body mass, habitat pref-
erence, trophic level, volant/non-volant, home range 
size) nor regional context (i.e., geographic location 
and regional forest cover of the study area) explained 
the magnitude of the difference between scales of 
effect of metrics of flux and patch density and for-
est cover (all coefficients p > 0.05; Appendix 5). This 
is further revealed by non-significant tests of mod-
erators (F) for both models (Fflux-forest cover = 0.67, 
p = 0.72; Fpd-forest cover = 0.71, p = 0.69). In both 
models, the variance ( �2 ) of samples within stud-
ies ( �2 flux-forest cover = 0.74; �2 pd-forest cover = 0.77) 
was greater than the variance among studies ( �2 
flux-forest cover = 0.11; �2 pd-forest cover = 0.12). We made 
inferences from meta-analysis models containing only 
a linear term for regional forest cover because adding 

Fig. 2   Overall effects 
(mean g ± 95% CI) for 
the differences in scales 
of effect of four metrics 
of habitat configuration 
compared to one metric 
of habitat composition 
(i.e., percent forest cover; 
N = 163 samples from 
33 datasets). A positive 
Hedge’s g value indicates a 
wider scale of effect for the 
metric of configuration than 
for composition
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a polynomial term did not improve any model by > 2 
AIC units.

Discussion

Metrics of habitat configuration and composition pro-
vide complementary information on attributes of the 
landscape, including connectivity, and there are com-
peting hypotheses regarding which of these categories 
of metrics have the wider scale of effect. Our results 
showed that for mammals associated with forest habi-
tat configuration has a wider scale of effect than com-
position, but only when flux and patch density were 
used to quantify configuration. The metric of con-
figuration used to compare scales of effect matters 
because different metrics contain information about 
different aspects of the landscape. Our study provides 
empirical evidence that fills a previous knowledge 
gap regarding whether landscape metrics significantly 
vary in their scales of effect and which kinds of met-
rics tend to have wider scales of effect (Miguet et al. 
2016). Based on our results, if a researcher knows 
the scale of effect of a metric of composition used to 
explain species occurrence, they can expect the scale 
of effect of certain metrics of configuration to be 
wider, particularly metrics that quantify aspects of the 
landscape important for dispersal and do not correlate 
with composition.

Difference in scale of effect of composition and 
configuration

The difference between the scales of effect of habi-
tat configuration and composition (i.e., forest cover) 
depends on which metric of configuration is selected 
for comparison. Of the four metrics of configuration, 
flux had the greatest difference from forest cover in 
scales of effect. Flux likely had a wider scale of effect 
than forest cover because flux measures aspects of the 
landscape that more strongly mediate dispersal. Met-
rics related to dispersal are predicted to have a wider 
scale of effect than metrics that quantify landscape 
attributes that are more related to breeding and forag-
ing success within a home range. This is because dis-
persal movements usually are longer than home range 
diameters (Miguet et al. 2016). Compared to the other 
metrics in this study, flux is more effective at measur-
ing aspects of the landscape that influence dispersal 

because it incorporates species-specific movement 
information (i.e., home range diameter) to estimate 
probable rates of dispersal for that species, mak-
ing flux the only metric of functional connectivity in 
our study (Crooks and Sanjayan 2006). Also, flux is 
the only metric in our study to use graph theory to 
incorporate patch arrangement to quantify the extent 
a stepping stone corridor promotes dispersal (Cala-
brese & Fagan 2004; Foltête et al. 2012). Thus, unlike 
all other metrics, flux can distinguish between habitat 
patches that contribute to connectivity, and those that 
do not.

Of our three metrics of structural connectivity, 
only patch density had a significantly wider scale of 
effect than forest cover. A direct link between patch 
density and dispersal is not as clear as this link for 
flux. However, landscapes with lower patch density 
may promote dispersal by being less fragmented 
and more contiguous, thus allowing more movement 
without the need to interact with the matrix (Schtick-
zelle et  al. 2006; Van Houtan et  al. 2007; Thornton 
et  al. 2011; Fletcher et  al. 2018a, b; Fletcher et  al. 
2018a, b; Fahrig et al. 2019). In other circumstances 
a landscape with higher patch density may promote 
dispersal by having an increased number of step-
ping stones, thus providing more pathways across 
the landscape (Andreassen & Ims 2001; Coulon 
et al. 2010; Fahrig 2017; Karnatak & Wollrab 2020). 
These opposing mechanisms by which patch density 
can positively or negatively mediate dispersal might 
act simultaneously to diminish the extent patch den-
sity contributes to species dispersal, and could in 
part explain why previous comparisons of the scales 
of effect of patch density and forest cover produced 
mixed results regarding which was significantly wider 
(Ethier & Fahrig 2011; Feagan 2011; Flick et  al. 
2012; Ordóñez-Gómez et  al. 2015; Galán-Acedo 
et  al. 2018; Bosco et  al. 2019; Gestich et  al. 2019). 
However, by assessing 163 comparisons of scale of 
effect from numerous species and contexts using con-
sistent methods, our study has produced empirical 
support that patch density has a wider scale of effect 
than forest cover. Similar to flux, the most likely rea-
son for this difference is that patch density measures 
aspects of the landscape that more strongly mediate 
dispersal (either positively or negatively) than forest 
cover. However, across all datasets in our study, the 
values of flux and patch density were highly corre-
lated across scales (R2 = 0.77, Appendix 6). Thus, it is 
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possible that the information provided by patch den-
sity served as a proxy for the information provided 
by flux, resulting in similar scale of effect estimates. 
To assess this, we tested the correlation between 
Hedge’s g for patch density-forest cover and a data-
set’s average correlation between patch density and 
flux across all 163 samples and found the correlation 
to be low (− 0.07). This result suggests that samples 
with a low correlation between patch density and flux 
were not generally more likely to have lower Hedge’s 
g, nor were samples with high correlation between 
patch density and flux more likely to have generally 
higher Hedge’s g values. Furthermore, we re-fit the 
three-level meta-analysis models using a subset of the 
datasets for which the average correlation between 
flux and patch density was < 0.7. We chose 0.7 as it 
is a rule-of-thumb for determining if two correlated 
variables should both be included in an analysis. We 
found that both flux and patch density still had sig-
nificantly wider scales of effect than forest cover (SI, 
Appendix 7). Thus, these post-hoc analyses show 
that patch density has a wider scale of effect than for-
est cover in its own right, rather than by serving as 
a proxy for flux. Still, it is possible that some of the 
strength of the relationship between patch density’s 
scale of effect and forest cover’s scale of effect results 
from the correlation between flux and patch density.

Regarding mean ENN and cohesion, at least two 
mechanisms may be responsible for the lack of differ-
ence between their scales of effect and forest cover. 
First, these two metrics of configuration measure 
attributes of the landscape that are weakly related to 
species dispersal compared to flux and patch density, 
and thus would not be expected to have a significantly 
wider scale of effect than forest cover. Mean ENN 
measures the average distance between a patch and 
its single nearest neighbor, and thus, may not capture 
details about the landscape important to long range 
dispersal which likely involves traversing multiple 
patches or making long distance movements between 
patch clusters (Fletcher et al. 2013). In other empiri-
cal studies, mean ENN has been a poor predictor of 
wildlife distributions (Moilanen & Nieminen 2002; 
Calabrese & Fagan 2004; Prugh 2009). Cohesion 
measures aggregation of forest pixels, which primar-
ily relates to patch size and edge density. These attrib-
utes promote resource diversity at the scale of an 
individual’s home range (Bender et  al. 1998; McIn-
tyre 1999). Thus, compared to flux and patch density, 

cohesion may measure aspects of the landscape more 
relevant to breeding and foraging success than disper-
sal, causing it to have a scale of effect similar to forest 
cover.

Second, both mean ENN and cohesion were more 
strongly correlated with forest cover compared to 
flux or patch density’s correlation with forest cover 
(R2 − 0.43, 0.73, 0.05, and − 0.2 respectively, Appen-
dix 6). Generally, as percent forest cover increases the 
average distance between forest patches (i.e., mean 
ENN) decreases. The similarity in information con-
tent between the two metrics likely diminishes the 
difference between their scales of effect. Cohesion 
captures information even more similar to that of for-
est cover. When percent forest cover increases, more 
forest pixels are bordered by other forest pixels, thus 
increasing cohesion. This degree of correlation could 
make these two metrics of configuration reasonably 
good proxies of habitat composition at these scales. 
Thus, because they represent much of the same 
information, their scales of effect are more similar. 
Together, the weak relationship between mean ENN 
and cohesion with mammal dispersal and their sta-
tistical correlation with forest cover could explain 
why the scales of effect of these two metrics of habi-
tat configuration were not significantly wider than 
the scale of effect of forest cover. Post-hoc analysis 
revealed that flux and patch density did not have simi-
larly high levels of correlation with forest cover at any 
of the 63 scales tested (Appendix 7).

Although our study is the first to synthesize 
numerous comparisons of scales of effect of configu-
ration and composition among multiple species, other 
empirical studies also have found metrics of configu-
ration to have wider scales of effect than composition 
(Feagan 2011; Galán-Acedo et al. 2018; Bosco et al. 
2019; Gestich et  al. 2019). These results combined 
with ours indicate that certain metrics of habitat con-
figuration, particularly those that effectively predict 
wildlife dispersal/distributions and are not correlated 
with composition, have wider scales of effect than 
metrics of habitat composition, in our case, forest 
cover. Based on the average scale of effect across all 
163 samples, scales of effect of flux and patch den-
sity were roughly 15–20% wider than those of forest 
cover. These specific results are most applicable to 
forest mammals; however, they could possibly apply 
to other taxa in other contexts. In particular, our study 
included volant mammals (i.e., bats) which followed 
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similar scale of effect trends as the other mammal 
species. This suggests that bird species could fol-
low similar trends, or at least are not excluded from 
these trends based on their volant habits. Mammals 
and birds living in other non-forest ecosystems could 
follow similar trends, provided that the preferred 
habitat is fragmented. Still, the differences between 
mammals and birds extend beyond their volant hab-
its, and the extent to which these results apply to non-
mammal taxa remains to be tested. More broadly, our 
results confirm that different landscape metrics can 
have significantly different scales of effect, and thus 
it is important to consider what landscape metric is 
used when assessing scales of effect.

Factors influencing the difference between scales of 
effect

No species traits or factors related to landscape con-
text that we tested explained the magnitude of the 
difference between scales of effect for flux and for-
est cover or patch density and forest cover. The lack 
of any significant relationship was likely in part 
because scales of effect are influenced by a complex 
mix of direct and indirect factors (Amiot et al. 2021; 
A. E. Martin 2018; Miguet et  al. 2016), resulting in 
high variability in the relationship between scales of 
effect and explanatory variables (SI, Appendix 5). 
For example, the scales of effect of all five metrics 
were sometimes smaller for large species like black 
bear and jaguar (Ursus americanus and Panthera 
onca, respectively), than for similar but smaller spe-
cies like lynx and ocelot (Lynx rufus and Leopardus 
pardalis, respectively). Also, the same species some-
times had scales of effect that varied by as much as an 
order of magnitude between studies. For example, we 
found that tyra (Eira barbara) had a scale of effect for 
patch density of 3700-m in one study, and 16,255-m 
in another. A possible explanation that contributes 
to the weak empirical relation between species traits 
and scales of effect is that regional context may be a 
stronger driver of scales of effect than species traits 
(Tittler 2008; Jackson & Fahrig 2015; Miguet et  al. 
2016; Galán-Acedo et  al. 2018). This is supported 
by evidence that landscape composition, configura-
tion, and other regional factors (e.g., level of human 
disturbance) significantly mediates wildlife move-
ment which can in turn influence scale of effect (Ren-
ken & Wiggers 1989; Taylor & Merriam 1995; Hein 

et al. 2004; Van Houtan et al. 2007; Van Beest et al. 
2011; Delattre et al. 2013). Overall, there were highly 
variable relationships between explanatory variables 
and scales of effect for both configuration and com-
position, inhibiting our ability to identify factors that 
determined the difference between scales of effect for 
these two aspects of the landscape.

Furthermore, no factors explained the magnitude 
of the difference in scales of effect because in many 
cases explanatory variables exhibited relationships 
that were similar for scales of effect of configuration 
and composition (i.e., a positive, negative, or quad-
ratic relationship). As such, the magnitude of the dif-
ference between scales of effect remained relatively 
constant across the range of variation of an explana-
tory variable. For example in a separate study, we 
found scales of effect for all five metrics had posi-
tive relationships with home range (Gengler, Ace-
vedo, and Branch, unpublished). The same was also 
true for study area geographic location (i.e., all scales 
of effect tended to be wider in tropical latitudes; SI, 
Appendix 5), which was generally a strong predic-
tor of scale of effect (Gengler, Acevedo, and Branch, 
unpublished). For these two reasons, the high varia-
bility and similar trends present for both composition 
and configuration, we did not identify any factors that 
influenced the magnitude of the difference between 
scales of effect. Rather, the difference between two 
metrics’ scales of effect seems to be an inherent dif-
ference that is relatively consistent across contexts.

Study limitations

Studies of scale of effect are limited by numer-
ous methodological issues (Jackson & Fahrig 2015; 
Miguet et  al. 2016). We were able to address some, 
but not all, of these. Foremost, testing an inadequate 
range and number of scales can result in erroneous 
identification of the scale of effect. For example, in 
many previous studies the observed scale of effect 
was the smallest or largest scale tested, and the cor-
rect scale of effect may have been on either side of 
this tested range (Jackson & Fahrig 2015; Martin 
2018). By analyzing primary data, we were able to 
generate large numbers of buffers with high resolu-
tions that allowed us to limit this bias. All but four of 
the 815 scales of effect in our study were more than 
1000-m medial to the endpoint buffers, suggesting 
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that our large range of buffers was sufficient to iden-
tify the true scale of effect.

A second common issue we were able to address 
is that low spatial resolution of landscape data biases 
the estimate towards wider scales of effect (Menden-
hall et  al. 2011; Miguet et  al. 2016). In our study, 
landscape data were constrained by the highest spatial 
resolution available for all study sites (25-m pixels). 
Although finer resolution may have been preferable, 
we expect this resolution was adequate to identify the 
scale of effect for mammals because their perceptual 
ranges ( i.e., the distances from which animals can 
detect landscape elements; Lima and Zollner 1996) 
exceeds 25-m. Perceptual ranges, which affect spe-
cies’ ability to move across fragmented landscapes, 
generally are 100-m or more for small mammals and 
much greater for larger mammals (Mech & Zollner 
2002; Pe’er & Kramer-Schadt, 2008; Bracis & Muel-
ler 2017; Rocha et al. 2021).

Despite addressing these methodological issues 
common to scale of effect studies, our ability to iden-
tify factors that explain the magnitude of the differ-
ence between scales of effect remained limited. Part 
of this limitation could be related to other methodo-
logical problems. One common limitation is that a 
landscape metric at a given scale correlates with itself 
at similar scales (Miguet et  al. 2016). Such correla-
tions can result in models that predict a species’ distri-
bution almost equally well across several scales. This 
increases the variability in scales of effect because a 
range of scales might be equally likely to be identified 
as the scale of effect, and by random chance values 
at the high or low end of this range might be selected 
as the scale of effect. Although this issue is largely 
unavoidable when selecting scales of effect, the wide 
range of scales tested in our study reduced this prob-
lem by allowing scales to take extremely different val-
ues, thus, facilitating the lack of correlation between 
the largest and smallest possible scales. Alternatively, 
our ability to detect significant explanatory variables 
may have been limited by the enormous complexity 
of factors that produce a scale of effect, especially 
indirect effects. Indirect effects arise when a land-
scape variable influences a factor that in turn affects 
the biological response variable of interest, creating 
one or more degrees of separation between the land-
scape variable and the biological response variable 
of interest. For example, patch density may promote 
predator populations, confounding the scale of effect 

of patch density for prey species. Even though we 
assessed seven factors predicted to influence scales 
of effect via plausible biological mechanisms (Miguet 
et al. 2016), these factors may have exhibited a rela-
tively small influence on scale of effect compared to 
indirect effects or the combined effects of many fac-
tors with weak direct effects. Finally, our study was 
limited by using a generalized measure of forest cover 
that might not accurately reflect all species’ habitat 
preferences. For example, dry secondary forest was 
indistinguishable from mature humid forest in our 
landcover maps, yet for some species in our study 
(e.g., the Indian squirrel Ratufa indica) mature forest 
could be preferable. This lack of habitat detail could 
increase the variability of our scale of effect estimates 
by confounding a species’ response to, for example, 
mature forest with their response to forest in general. 
However, the total amount of forest habitat in an area 
likely correlates with the amount of preferred forest 
habitat in most cases. Furthermore, this was a neces-
sary simplification to allow comparisons across spe-
cies and studies. Our extensive range of scales and 
consistent methodology across all species and data-
sets overcomes many of the barriers that impeded 
previous comparisons of different metrics’ scales of 
effect.

Conclusion

Our analysis of 163 comparisons of scale of effect 
that represent 107 mammal species from 33 data-
sets supported the hypothesis that the difference 
between scales of effect for configuration and com-
position depends on the metrics selected. In the two 
cases where there was a significant difference (i.e., 
flux and patch density), the metrics of configuration 
were wider than composition, suggesting that these 
two metrics measure attributes of the landscape that 
contribute more strongly to dispersal than forest cover 
does, likely via mediating landscape connectivity. 
Previous research predicted that different landscape 
metrics have different scales of effect, but empirical 
support was limited (Miguet et  al. 2016). Our study 
confirmed this prediction, but contradicted the spe-
cific prediction that metrics of habitat configuration 
should have smaller scales of effect than composition.

If the scale of effect of a metric of composition 
is known from previous research, then a metric of 
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configuration’s scale of effect would be expected to 
be roughly 15–20% wider, and vice-versa, at least 
for forest mammals. However, this pattern may not 
hold for metrics of configuration that do not measure 
attributes of the landscape that mediate species dis-
persal or are correlated with the metric of composi-
tion. Our results strengthen our empirical understand-
ing of scale of effect and are a step towards the ability 
to form a priori approximations of scale of effect.

Acknowledgements  We would foremost like to thank the 
researchers who generously shared their data online, without 
which this study would not have been possible. A full list of 
the research teams that provided the data used in this study 
can be found in Appendix 3. We would also like to thank the 
extremely talented undergraduate students in the University of 
Florida Department of Wildlife Ecology and Conservation for 
their help compiling species movement data: Chloe Arbogast, 
Savannah Cantrell, Kaleigh Conroy, Isla Hession, Tristen 
Ladika, Connor Milton, and Charisse Sproha. This paper is 
based upon work supported by the National Science Founda-
tion Graduate Research Fellowship Program under Grant No. 
DGE-1315138 and DGE-1842473. Any opinions, findings, and 
conclusions or recommendations expressed in this material are 
those of the authors and do not necessarily reflect the views of 
the National Science Foundation.

Author contributions  All authors contributed to the study 
conception and design. Data collection and analysis were per-
formed by NWG. The first draft of the manuscript was writ-
ten by NWG and all authors commented on previous versions 
of the manuscript. All authors read and approve of the final 
manuscript.

Funding  This material is based upon work supported by the 
National Science Foundation Graduate Research Fellowship 
Program under Grant No. DGE-1315138 and DGE-1842473. 
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and 
do not necessarily reflect the views of the National Science 
Foundation.

Data availability  The datasets generated during and/or ana-
lyzed during the current study are available in the Appendices 
found in the Supplementary Information, and from the corre-
sponding author upon reasonable request.

Declarations 

Competing interests  The authors have no relevant financial 
or non-financial interests to disclose.

Open Access   This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any 
medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative 

Commons licence, and indicate if changes were made. The 
images or other third party material in this article are included 
in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit 
http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Amiot C, Cavalcante C, Damien S, Cle F, Holland JD, Melo 
I, Renaud JMP, Oliveira FD, Leandro F, Olivier S (2021) 
The scale of effect depends on operational definition of 
forest cover — evidence from terrestrial mammals of the 
Brazilian savanna. Landsc Ecol. https://​doi.​org/​10.​1007/​
s10980-​021-​01196-9

Andreassen HP, Ims RA (2001) Dispersal in patchy vole popu-
lations: role of patch configuration, density dependence, 
and demography. Ecology 82(10):2911–2926

Bender DJ, Contreras TA, Fahrig L (1998) Habitat loss and 
population decline: a meta-analysis of the patch size 
effect. Ecology 79(2):517–533

Bierwagen BG (2007) Connectivity in urbanizing landscapes: 
the importance of habitat configuration, urban area size, 
and dispersal. Urban Ecosyst 10(1):29–42

Bosco L, Wan HY, Cushman SA, Arlettaz R, Jacot A (2019) 
Separating the effects of habitat amount and fragmenta-
tion on invertebrate abundance using a multi-scale frame-
work. Landsc Ecol 34(1):105–117

Bracis C, Mueller T (2017) Memory, not just perception, plays 
an important role in terrestrial mammalian migration. 
Proc Royal Soc. https://​doi.​org/​10.​1098/​rspb.​2017.​0449

Calabrese JM, Fagan WF (2004) A comparison-shopper’s 
guide to connectivity metrics. Front Ecol Environ 
2(10):529–536

Cheung MWL (2019) A guide to conducting a meta-analysis 
with non-independent effect sizes. Neuropsychol Rev 
29(4):387–396

Cohen J (1988) Statistical power analysis for behavior sciences 
(Second Edition). Lawrence Eribaum Associates

Coulon A, Fitzpatrick JW, Bowman R, Lovette IJ (2010) 
Effects of habitat fragmentation on effective dispersal of 
Florida scrub-jays. Conserv Biol 24(4):1080–1088

Crooks KR, Sanjayan MA (2006) Connectivity conservation: 
maintaining connections for nature. In: Crooks KR, San-
jayan M (eds) Connectivity conservation. Cambridge Uni-
versity Press, Cambridge, pp 1–20

d’Annunzio R, Sandker M, Finegold Y, Min Z (2015) Project-
ing global forest area towards 2030. For Ecol Manage 
352:124–133

da Rocha ÉG, Brigatti E, Niebuhr BB, Ribeiro MC, Vieira MV 
(2021) Dispersal movement through fragmented land-
scapes: the role of stepping stones and perceptual range. 
Landsc Ecol 36(11):3249–3267

De Knegt HJ, Van Langevelde F, Coughenour MB, Skid-
more AK, De Boer WF, Heitkönig IMA, Knox NM, 
Slotow R, Van Der Waal C, Prins HHT (2010) Spatial 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10980-021-01196-9
https://doi.org/10.1007/s10980-021-01196-9
https://doi.org/10.1098/rspb.2017.0449


	 Landsc Ecol            (2024) 39:2 

1 3

    2   Page 14 of 15

Vol:. (1234567890)

autocorrelation and the scaling of species-environment 
relationships. Ecology 91(8):2455–2465

Delattre T, Baguette M, Burel F, Stevens VM, Quénol H, Ver-
non P (2013) Interactive effects of landscape and weather 
on dispersal. Oikos 122(11):1576–1585

Durlak JA (2009) How to select, calculate, and interpret effect 
sizes. J Pediatr Psychol 34(9):917–928

Efron B, Gong G (1983) A leisurely look at the bootstrap, the 
Jackknife, and cross-validation. Am Stat 37(1):36–48

Elmhagen B, Angerbjorn A (2001) The applicability of 
metapopulation theory to large mammals. Oikos 
94(1):89–100

Ethier K, Fahrig L (2011) Positive effects of forest fragmen-
tation, independent of forest amount, on bat abundance 
in eastern Ontario. Canada Lands Ecol 26(6):865–876

Fahrig L (2013) Rethinking patch size and isolation 
effects: the habitat amount hypothesis. J Biogeogr 
40(9):1649–1663

Fahrig L (2017) Ecological responses to habitat fragmentation 
per se. Ann Rev Ecol Evolut Syst 48(1):110316–022612

Fahrig L, Arroyo-Rodríguez V, Bennett JR, Boucher-lalonde 
V, Cazetta E, Currie DJ, Eigenbrod F, Ford AT, Harrison 
SP, Jaeger JAG, Koper N, Martin AE, Martin J, Paul J, 
Morrison P, Rhodes JR, Saunders DA, Simberloff D et al 
(2019) Is habitat fragmentation bad for biodiversity? Biol 
Conserv 230:179–186

Feagan, S. (2011). Does landscape heterogeneity affect bee 
diversity in farmland? Doctoral dissertation, Carleton 
University. https://​doi.​org/​10.​1017/​CBO97​81107​415324.​
004

Ferrari JR, Lookingbill TR, Neel MC (2007) Two measures of 
landscape-graph connectivity: assessment across gradients 
in area and configuration. Landsc Ecol 22(9):1315–1323

Fletcher RJ, Revell A, Reichert BE, Kitchens WM, Dixon 
JD, Austin JD (2013) Network modularity reveals criti-
cal scales for connectivity in ecology and evolution. Nat 
Commun 4:1–7

Fletcher RJ, Acevedo MA, Robertson EP (2014) The matrix 
alters the role of path redundancy on patch colonization 
rates. Ecology 95(6):1444–1450

Fletcher RJ, Didham RK, Banks-Leite C, Barlow J, Ewers RM, 
Rosindell J, Holt RD, Gonzalez A, Pardini R, Damschen 
EI, Melo FPL, Ries L, Prevedello JA, Tscharntke T, Laur-
ance WF, Lovejoy T, Haddad NM (2018a) Is habitat frag-
mentation good for biodiversity? Biol Cons 226:9–15

Fletcher RJ, Reichert BE, Holmes K (2018b) The negative 
effects of habitat fragmentation operate at the scale of dis-
persal. Ecology 99(10):2176–2186

Flick T, Feagan S, Fahrig L (2012) Effects of landscape struc-
ture on butterfly species richness and abundance in agri-
cultural landscapes in eastern Ontario, Canada. Agr Eco-
syst Environ 156:123–133

Foltête JC (2019) How ecological networks could benefit 
from landscape graphs: a response to the paper by Spart-
aco Gippoliti and Corrado Battisti. Land Use Policy 
80:391–394

Foltête JC, Clauzel C, Vuidel G, Tournant P (2012) Integrating 
graph-based connectivity metrics into species distribution 
models. Landsc Ecol 27(4):557–569

Galán-Acedo C, Arroyo-Rodríguez V, Estrada A, Ramos-
Fernández G (2018) Drivers of the spatial scale that best 

predict primate responses to landscape structure. Ecogra-
phy 41(12):2027–2037

Gestich CC, Arroyo-Rodríguez V, Ribeiro MC, da Cunha 
RGT, Setz EZF (2019) Unraveling the scales of effect 
of landscape structure on primate species richness and 
density of titi monkeys (Callicebus nigrifrons). Ecol Res 
34(1):150–159

Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, 
Moore R (2017) Google earth engine: planetary-scale 
geospatial analysis for everyone

Gucciardi DF, Lines RLJ, Ntoumanis N (2021) Handling effect 
size dependency in meta-analysis. Int Rev Sport Exerc 
Psychol. https://​doi.​org/​10.​1080/​17509​84X.​2021.​19468​35

Hanski I (1998) Metapopulation dynamics. Nature 396:9
Hein S, Pfenning B, Hovestadt T, Poethke HJ (2004) Patch 

density, movement pattern, and realised dispersal dis-
tances in a patch-matrix landscape - A simulation study. 
Ecol Model 174(4):411–420

Herrera LP, Sabatino MC, Jaimes FR, Saura S (2017) Land-
scape connectivity and the role of small habitat patches as 
stepping stones: an assessment of the grassland biome in 
South America. Biodivers Conserv 26(14):3465–3479

Holland JD, Bert DG, Fahrig L (2004) Determining the spa-
tial scale of species’ response to habitat. Bioscience 
54(3):227–233

Huais PY (2018) Multifit: an R function for multi-scale analy-
sis in landscape ecology. Lands Ecol 33(7):1023–1028

IUCN (2021) The IUCN Red List of Threatened Species. Ver-
sion 2021–2023. https://​www.​iucnr​edlist.​org

Jackson HB, Fahrig L (2012) What size is a biologically rel-
evant landscape? Landsc Ecol 27(7):929–941

Jackson HB, Fahrig L (2015) Are ecologists conduct-
ing research at the optimal scale? Glob Ecol Biogeogr 
24(1):52–63

Jones KE, Bielby J, Cardillo M, Fritz SA, O’Dell J, Orme 
CDL, Safi K, Sechrest W, Boakes EH, Carbone C, Con-
nolly C, Cutts MJ, Foster JK, Grenyer R, Habib M, Plaster 
CA, Price SA, Rigby EA, Rist J et al (2009) PanTHERIA: 
a species-level database of life history, ecology, and geog-
raphy of extant and recently extinct mammals. Ecology 
90(9):2648–2648

Karnatak R, Wollrab S (2020) A probabilistic approach to 
dispersal in spatially explicit meta-populations. Sci Rep 
10(1):1–12

Keinath DA, Doak DF, Hodges KE, Prugh LR, Fagan W, 
Sekercioglu CH, Buchart SHM, Kauffman M (2017) A 
global analysis of traits predicting species sensitivity to 
habitat fragmentation. Glob Ecol Biogeogr 26(1):115–127

Koricheva J, Gurevitch J, Mengersen K (eds) (2013) Handbook 
of Meta-Analysis in Ecology and Evolution. Princeton 
University Press, Princeton

Levin SA (1992) The problem of pattern and scale in ecology. 
Ecology 73(6):1943–1967

Lima SL, Zollner PA (1996) Towards a behavioral ecology of 
ecological landscapes. TREE. https://​doi.​org/​10.​1016/​
0169-​5347(96)​81094-9

Martin AE (2018) The spatial scale of a species’ response 
to the landscape context depends on which biological 
response you measure. Curr Landsc Ecol Rep 3(1):23–33

Martin EA, Seo B, Park CR, Reineking B, Steffan-Dewenter I 
(2016) Scale-dependent effects of landscape composition 

https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1080/1750984X.2021.1946835
https://www.iucnredlist.org
https://doi.org/10.1016/0169-5347(96)81094-9
https://doi.org/10.1016/0169-5347(96)81094-9


Landsc Ecol            (2024) 39:2 	

1 3

Page 15 of 15      2 

Vol.: (0123456789)

and configuration on natural enemy diversity, crop her-
bivory, and yields. Ecol Appl 26(2):448–462

McGarigal K (2015) Fragstats Help (Issue April, pp 1–182)
McIntyre NE (1999) Effects of forest patch size on avian diver-

sity. NCASI Tech Bull 10(781):337
Mech SG, Zollner PA (2002) Using body size to predict per-

ceptual range. Oikos 98(1):47–52
Mendenhall CD, Sekercioglu CH, Brenes FO, Ehrlich PR, 

Daily GC (2011) Predictive model for sustaining biodi-
versity in tropical countryside. Proc Natl Acad Sci USA 
108(39):16313–16316

Miguet P, Jackson HB, Jackson ND, Martin AE, Fahrig L 
(2016) What determines the spatial extent of landscape 
effects on species? Landsc Ecol 31(6):1177–1194

Moilanen A, Nieminen M (2002) Simple connectivity meas-
ures in spatial ecology. Ecology 83(4):1131–1145

Moraga AD, Martin AE, Fahrig L (2019) The scale of effect of 
landscape context varies with the species’ response vari-
able measured. Landsc Ecol 34(4):703–715

Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, 
Saltz D, Smouse PE (2008) A movement ecology para-
digm for unifying organismal movement research. PNAS 
105(49):1603–1607

O’Brien D, Manseau M, Fall A, Fortin MJ (2006) Testing the 
importance of spatial configuration of winter habitat for 
woodland caribou: an application of graph theory. Biol 
Cons 130(1):70–83

Ordóñez-Gómez JD, Arroyo-Rodríguez V, Nicasio-Arzeta 
S, Cristóbal-Azkarate J (2015) Which is the appropriate 
scale to assess the impact of landscape spatial configura-
tion on the diet and behavior of spider monkeys? Am J 
Primatol 77(1):56–65

Pe’er G, Kramer-Schadt S (2008) Incorporating the perceptual 
range of animals into connectivity models. Ecol Model 
213(1):73–85

Presley SJ, Cisneros LM, Klingbeil BT, Willig MR 
(2019) Landscape ecology of mammals. J Mammal 
100(3):1044–1068

Prugh LR (2009) An evaluation of patch connectivity meas-
ures. Ecol Appl 19(5):1300–1310

Renken RB, Wiggers EP (1989) Forest characteristics related 
to pileated woodpecker territory size in missouri. The 
Condor 91(3):642–652

Ricci B, Franck P, Valantin-Morison M, Bohan DA, Lavigne 
C (2013) Do species population parameters and landscape 
characteristics affect the relationship between local popu-
lation abundance and surrounding habitat amount? Ecol 
Complex 15:62–70

Saura S, Rubio L (2010) A common currency for the different 
ways in which patches and links can contribute to habitat 
availability and connectivity in the landscape. Ecography 
33(3):523–537

Schtickzelle N, Mennechez GG, Baguette M (2006) Dis-
persal depression with habitat fragmentation. Ecology 
87(4):1057–1065

Schumaker NH (1996) Using landscape indices to predict habi-
tat connectivity. Ecology 77(4):1210–1225

Shimada M, Itoh T, Motooka T, Watanabe M, Shiraishi T, 
Thapa R, Lucas R (2014) New global forest/non-forest 
maps from ALOS PALSAR data (2007–2010). Remote 
Sens Environ 155:13–31

Simmonds MC, Higgins JPT, Stewart LA, Tierney JF, Clarke 
MJ, Thompson SG (2005) Meta-analysis of individual 
patient data from randomized trials: a review of methods 
used in practice. Clin Trials 2(3):209–217

Taylor PD, Merriam G (1995) Wing morphology of a for-
est damselfly is related to landscape structure. Oikos 
73(1):43–48

Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connec-
tivity is a vital element of landscape structure. Oikos 
68(3):571–573

Thornton DH, Fletcher RJ (2014) Body size and spatial scales 
in avian response to landscapes: a meta-analysis. Ecogra-
phy 37(5):454–463

Thornton D, Branch L, Sunquist ME (2011) The relative 
influence of habitat loss and fragmentation: do tropi-
cal mammals meet the temperate paradigm? Ecol Appl 
21:2324–2333

Tittler R (2008) Source-sink dynamics, dispersal, and land-
scape effects on North American songbirds. Doctoral Dis-
sertation, Carleton University.

Tobler MW, Carrillo-Percastegui SE, Leite Pitman R, Mares 
R, Powell G (2008) An evaluation of camera traps for 
inventorying large- and medium-sized terrestrial rainforest 
mammals. Anim Conserv 11(3):169–178

Trani MK, Giles RH (1999) An analysis of deforestation: met-
rics used to describe pattern change. For Ecol Manage 
114(2–3):459–470

Tredennick AT, Hooker G, Ellner SP, Adler PB (2021) A prac-
tical guide to selecting models for exploration, inference, 
and prediction in ecology. Ecology. https://​doi.​org/​10.​
1002/​ecy.​3336

Urban D, Keitt T (2001) Landscape connectivity: a graph-theo-
rietic perspective. Ecology 82(5):1205–1218

Van Beest FM, Rivrud IM, Loe LE, Milner JM, Mysterud A 
(2011) What determines variation in home range size 
across spatiotemporal scales in a large browsing herbi-
vore? J Anim Ecol 80(4):771–785

Van Houtan KS, Pimm SL, Halley JM, Bierregaard RO, Love-
joy TE (2007) Dispersal of Amazonian birds in continu-
ous and fragmented forest. Ecol Lett 10(3):219–229

Wines JA (1989) Spatial scaling in ecology. Funct Ecol 
3(4):385–397

Zuckerberg B, Desrochers A, Hochachka WM, Fink D, Koenig 
WD, Dickinson JL (2012) Overlapping landscapes: a per-
sistent, but misdirected concern when collecting and ana-
lyzing ecological data. J Wildl Manag 76(5):1072–1080

Publisher’s Note  Springer Nature remains neutral with regard 
to jurisdictional claims in published maps and institutional 
affiliations.

https://doi.org/10.1002/ecy.3336
https://doi.org/10.1002/ecy.3336

	Habitat configuration influences mammal populations at a wider spatial extent than habitat composition: a meta-analysis of forest mammal datasets
	Abstract 
	Context 
	Objectives 
	Methods 
	Results 
	Conclusions 

	Introduction
	Materials and methods
	Study system
	Literature review and data extraction
	Scale of effect calculation
	Scale of effect analysis

	Results
	Difference between configuration and composition scales of effect
	Factors influencing the magnitude of the difference between scales of effect

	Discussion
	Difference in scale of effect of composition and configuration
	Factors influencing the difference between scales of effect
	Study limitations

	Conclusion
	Acknowledgements 
	References


