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Abstract

Roads are a main threat to biodiversity conservation in the Amazon, in part, because roads

increase access for hunters. We examine how increased landscape access by hunters may

lead to cascading effects that influence the prey community and abundance of the jaguar

(Panthera onca), the top Amazonian terrestrial predator. Understanding such ecological

effects originating from anthropogenic actions is essential for conservation and manage-

ment of wildlife populations in areas undergoing infrastructure development. Our study was

conducted in Yasunı́ Biosphere Reserve, the protected area with highest potential for jaguar

conservation in Ecuador, and an area both threatened by road development and inhabited

by indigenous groups dependent upon bushmeat. We surveyed prey and jaguar abundance

with camera traps in four sites that differed in accessibility to hunters and used site occu-

pancy and spatially explicit capture-recapture analyses to evaluate prey occurrence and

estimate jaguar density, respectively. Higher landscape accessibility to hunters was linked

with lower occurrence and biomass of game, particularly white-lipped peccary (Tayassu

pecari) and collared peccary (Pecari tajacu), the primary game for hunters and prey for jag-

uars. Jaguar density was up to 18 times higher in the most remote site compared to the

most accessible site. Our results provide a strong case for the need to: 1) consider conser-

vation of large carnivores and other wildlife in policies about road construction in protected

areas, 2) coordinate conservation initiatives with local governments so that development

activities do not conflict with conservation objectives, and 3) promote development of com-

munity-based strategies for wildlife management that account for the needs of large

carnivores.
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Introduction

Many populations of large carnivores are declining and threatened with extinction worldwide

[1]. Because large predators have been shown to play key roles in the structure and function of

many ecosystems, reduction in populations of these species has altered dynamics of ecosystems

ranging from grasslands to tropical forest [1,2]. Major causes of large carnivore declines

include habitat loss and degradation with human development, mortality from human-carni-

vore conflicts or poaching, prey depletion, and synergisms among these factors [1,3,4]. As a

result of these processes, in the last century, the jaguar (Panthera onca) has disappeared from

over half of its original range [5,6].

Currently, the Amazon Basin is the main stronghold for jaguar conservation as it sustains

89% of the cat’s global population [6]. However, Amazonia faces rapid changes associated with

large-scale development that can threaten the future of the jaguar in the region. For example:

80,000 km2 of forests have been converted to soybean plantations in the Brazilian Amazon [7];

hydropower dams exist, are under construction, or planned in numerous tributaries of the

Amazon [8]; and extractive activities, such as those for hydrocarbons and minerals, are wide-

spread in the region and in some cases occur within protected areas [9,10]. These developmen-

tal activities are associated with road development that promotes formation of new settlements,

increases colonization rates, and ultimately catalyzes land cover change and biodiversity loss

[11–13].

In face of current and future change in Amazonian ecosystems, jaguar conservation

depends heavily upon the large system of protected areas, particularly megareserves, in this

region (i.e., areas > 10,000 km2, [14,15]. However, pressure to construct roads within wilder-

ness areas is high [9,16]. Traditionally, access by hunters has been limited to areas adjacent to

rivers. As new roads are developed in the region, we can expect that a higher proportion of

Amazonia will become accessible, and therefore the proportion of natural areas that function

as wildlife refuges or sources will decrease [17–19]. Moreover, as road networks increase, mar-

kets become more available to subsistence hunters promoting commercialization of wildlife

and targeted hunting of large game species that provide high returns [19–23]. The conse-

quences of this process for jaguar populations may be large because programs for sustainably

managing hunting generally are lacking, and density of large carnivore populations often is

closely related to abundance of large-bodied prey, such as ungulates, which increasingly are

overexploited [24–26].

Based on these observations, one can infer that the potential of protected areas to conserve

large carnivores such as jaguars may be seriously compromised if these lands become more

accessible by roads. Thus far, studies that contribute to understanding cascading effects of

roads on wildlife in tropical forests have primarily investigated impacts of roads on hunting

pressure [e.g., 18,20,22]. In this paper we analyze the consequences of increasing accessibility

to a wilderness area for populations of jaguar and their prey. This research was conducted in

Yasunı́ Biosphere Reserve located in Ecuador’s Amazon region where pressure to extract natu-

ral resources is high [27–29].

Materials and methods

Study area

Yasunı́ Biosphere Reserve (hereafter Yasunı́) is located in the Ecuadorian Amazon and formed

by Yasunı́ National Park (ca. 10,000 km2) and the adjacent Waorani Ethnic Reserve (ca. 8,000

km2) (Fig 1). Yasunı́ is mainly inhabited by the Waorani, a historically semi-nomadic group

that began adopting a sedentary lifestyle after their contact with western culture in the mid-
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1950s [30]; other indigenous groups, such as Kichwa and Shuar, live at the reserve margins.

Road construction began in the early 1980s with the Auca Road to access oil reserves in Waor-

ani territory. In the early 1990s, the Maxus Road was built in the northern portion of Yasunı́

National Park (Fig 1) and various permanent Waorani settlements were formed along this

road.

Vegetation in Yasunı́ primarily comprises evergreen tropical terra firme forest with canopy

height between 25–40 m [31]. Flood plains and swampy areas dominated by the palm Mauritia
flexuosa occur along margins of the main rivers. Seasons are not marked. Annual rainfall is

~3,000 mm with>100 mm precipitation in all months. Mean monthly temperatures are 22–

34˚C [31].

Study design

We hypothesized that in Yasunı́: 1) abundance of large game is strongly influenced by land-

scape accessibility to hunters, and 2) reductions of large game cause local declines in jaguar

Fig 1. Camera trap arrays in four sites in Yasunı́ Biosphere Reserve ordered from low to high human access. A) Lorocachi; B) Tiputini; C) Keweriono;

D) Maxus Road.

https://doi.org/10.1371/journal.pone.0189740.g001
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density. Indigenous inhabitants in these areas generally do not hunt jaguars [19,32–34]. Based

on this, we predicted that occurrence and biomass of prey would be lower in more accessible

areas and that we would observe lower local densities of jaguars in these areas. To evaluate our

predictions, we surveyed prey and jaguar populations in four sites in Yasunı́ with varying

degree of access. Ordered from the least to the most accessible, these sites were Lorocachi [76˚

00’30”W, 1˚42’23”S], Tiputini [76˚00’07”W, 0˚42’35”S], Keweriono [77˚07’27”W, 1˚00’49”S],

and Maxus Road [76˚26’49”W, 0˚40’11”S] (Fig 1; Table 1).

Lorocachi (Fig 1A) is located near the Curaray River adjacent to the southern border of

Yasunı́ in the buffer area of the reserve and is accessible only by air. This site is inhabited by a

Kichwa community of 120 people and a 300-person army base, both established in 1953. Army

personnel are not allowed to hunt and are provisioned by Ecuador’s army. Protein demands of

the Kichwa are met with poultry, fishing, and hunting. Kichwa in Lorocachi have no-hunt areas

and limited harvest of Salvin’s curassow (Mitu salvini), Amazonian tapir (Tapirus terrestris) and

white-lipped peccaries (Tayassu pecari) within their hunting area [35]. Our survey area was

accessible only on foot and extended from 3 to 21 km from the community of Lorocachi. Based

on maximum distances walked by Amazonian hunters from settlements or sources of access

(i.e., 8–9 km), we estimate that 70–80% of this survey area is out of reach of hunters [18,19].

The Tiputini site (Fig 1B) is located on the northern margin of Yasunı́ accessible only by

the Tiputini River. Although this area is not inhabited, we observed ammunition, remains of

hunting camps, and Waorani and Kichwa hunters while conducting our study (one and two

occasions, respectively). As hunters have to travel 3–5 hours from their settlements by dugout

canoes to reach this site, it is likely that hunting occurs sporadically.

The Keweriono site (Fig 1C) is within the Waorani Ethnic Reserve in the western portion

of Yasunı́, and includes the settlements of Apaika (10 inhabitants) and Keweriono (60 inhabi-

tants) along the Shiripuno River. Apaika and Keweriono are 15 and 25 km from the Auca

Road, respectively. All our survey area is accessible to hunters by foot, and hunting has been

continuous in this area since establishment of Keweriono in 1989. Hunting is principally for

subsistence purposes, but smoked bushmeat is occasionally traded along the Auca Road

[30,33]. Hunters from Apaika and Keweriono can get to the road on foot (6–8 hrs) or by trav-

eling on the river (3–6 hrs).

The Maxus Road site (Fig 1D) encompasses hunting areas of four Waorani settlements

(Guiyero, Tiwe, Ganketa and Timpoka) with a combined population of 70. All this area is

accessible to hunters by foot and has been hunted continuously since settlements formed in

the early 1990s after the road was constructed. Bushmeat extraction is greater at this site than

our other study sites as Waorani along this road use wildlife as a commodity, trading approxi-

mately 35% of the total harvest at local markets [19].

Wildlife survey

To evaluate occurrence of prey and jaguar density across areas that differed in accessibility to

hunters, we conducted semi-systematic sampling with camera traps (Leaf River™ model

Table 1. Hunter’s accessibility at four study sites in Yasunı́. Accessibility is measured as distance (mean km ± SD) of camera traps to three sources of

access: roads, rivers and settlements.

Study sites

Source of access Lorocachi Tiputini Keweriono Maxus Road

Road 74.46 ± 4.70 31.72 ± 2.72 12.34 ± 2.91 1.85 ± 1.25

River 6.69 ± 1.18 1.70 ± 1.49 2.25 ± 1.67 2.28 ± 1.76

Settlement 11.61 ± 5.09 15.06 ± 2.93 2.96 ± 1.53 3.56 ± 1.62

https://doi.org/10.1371/journal.pone.0189740.t001
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C1-BU equipped with passive heat and motion sensors) for 90 consecutive days at each of our

four sites. We placed 23–26 camera trap stations (hereafter stations) within a polygon of 104–

110 km2 at each site (S1 Table). Stations were located 2–3 km apart along transects cut for this

study (44–67 km of transects per site) with cameras on opposite sides of the transect opening

to photograph both flanks of an animal and, thus, maximize the probability of identification of

individual jaguars from fur rosette patterns. Spacing of stations was designed to ensure that all

jaguars within each survey area had some probability of capture [36]. Cameras were mounted

on trees 30–40 cm above ground and tested to ensure capture of prey species as small as black

agouti (Dasyprocta fuliginosa) and nine-banded armadillo (Dasypus novemcinctus). We placed

stations in optimal microsites (e.g., where we observed animal trails and jaguar or prey tracks)

and only in terra-firme forest to prevent equipment from flooding. Stations were baited with

six drops of a mix of Hawbacker’s Wildcat lures No. 1 and 2 (S. Stanley Hawbaker & Sons,

Fort Loudon, PA), which we placed on a piece of woody debris between camera traps at instal-

lation time and every 15 days when we checked cameras.

Our research protocol was reviewed by the Ministry of the Environment of Ecuador and

this Ministry granted us a permit to work in Yasunı́ National Park (Permit No. 012-IC-FA-P-

NYRSO). We also obtained a permit from the Waorani Organization (NAWE) to work in

their territory. Our research protocol did not include invasive techniques such as animal han-

dling or sacrifice and was approved by the Institutional Animal Care and Use Committee

(IACUC-E812) of University of Florida.

Analyses of prey availability

Prey availability for jaguars at the four sites was estimated using two measures: 1) occurrence

of prey species measured as probability of site occupancy Ψ [37], and 2) biomass per camera

trap station. Ψ may reflect the chance jaguars have to encounter prey at a particular site, and

prey biomass is a measure of potential food availability. Prey occurrence and detection proba-

bility were estimated with single season site occupancy models with program PRESENCE

[37,38]. Because medium-sized and large mammals are highly mobile and could enter and

leave the survey area during our sampling, the occupancy estimator is best interpreted as prob-

ability of site use rather than probability of occupancy [37]. We use traditional occupancy ter-

minology in this paper for ease of presentation. We developed separate occupancy models for

all species from our study area that have been reported to be important prey for jaguar: white-

lipped peccary, collared peccary (Pecari tajacu), Amazonian tapir, red brocket (Mazama amer-
icana), Amazonian brown brocket (M. nemorivaga), paca (Cuniculus paca), black agouti, and

armadillos (Dasypus novemcinctus and D. kappleri; analyzed as a single species because of

uncertainty in species identification from pictures) [39].

To estimate occupancy for these 8 prey species, we combined data from our four study sites

(n = 100 stations) and divided the 90-day survey period into 9 trapping occasions of 10 days

each (S1 Data). We modeled occupancy as a function of landscape accessibility to hunters rep-

resented by two covariates: Euclidean distances of stations to settlements and to nearest source

of access—road or navigable river. Because hunting by subsistence hunters is concentrated

around settlements and near margins of rivers and roads, distances to these landscape features

are good predictors of hunting intensity [19,40]. We added habitat type as a third predictor of

occupancy represented by a dummy variable that reflects the main topographical categories in

terra firme in Yasunı́ (ridges and valleys [31], S1 Data). We used distance between paired cam-

eras as a predictor of detection probability and developed 15 models for each species that

included all combinations of explanatory variables for occupancy and detection probability.

Best-fit models were selected with Akaike Information Criterion corrected for small samples
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(AICc, [41]. We obtained site-specific Ψ estimates by averaging the Ψ estimates of stations

within sites.

To assess the prey base for jaguars, we estimated a biomass index for each station defined

as: BI ¼
PR

i¼1
niwi

t , where R is the number of species detected in a station, ni is the number of

individuals of species i, wi is the average weight (kg) of species i, and t is the time (days) the sta-

tion was active. Average weight of each species was obtained from animals hunted along the

Maxus Road in a parallel study [19] or from the database PanTHERIA [42]. We estimated

three BIs per station that included: 1) all terrestrial species with body mass�1 kg, 2) only

ungulates, and 3) all terrestrial species excluding ungulates. We excluded puma (Puma conco-
lor) from these analyses because it is unlikely that jaguars prey on this large cat. Pumas have

not been reported as prey in studies of jaguar diet [43–50]. To estimate BIs we considered pho-

tographs of the same species to be independent when a minimum of 1 hour occurred between

detections. If more than one picture of a species was taken within a one-hour period, we chose

the picture with the largest number of individuals for BI. Our BI is a measure of biomass per

unit of time (kg/day) for each station and therefore does not strictly reflect biomass (i.e., mass

of living material per unit of area), however, we use the term biomass throughout our manu-

script for convenience. We tested for differences in biomass among our four study sites with a

Kruskal-Wallis test.

Finally, to evaluate the relationships between ungulate prey biomass and measures of land-

scape accessibility (distance to road, river, and settlement) we conducted a Pearson correlation.

We estimated coefficient 95% highest density intervals using Bayesian bootstrap method with

1,000 posterior resamples draws with R package ‘bayesboot’ [51]

Estimation of jaguar density

We used two approaches to estimate jaguar density at each site based on adult individuals cap-

tured within the 90-day sample period. First, we estimated jaguar density with a spatially

explicit capture-recapture model (SECR). SECR models do not rely on estimating an effective

trapping area and, therefore, are particularly useful in the absence of geographic closure. We

used a Bayesian approach for SECR, implemented by R package SPACECAP [52,53], which

relies on Markov chain Monte Carlo (MCMC) simulation for parameter estimation and is less

sensitive to small sample sizes than methods using asymptotic inference [52,54]. Density esti-

mation with SECR involves two groups of models. A state process model simulates potential

individual home range centers that are uniformly distributed within an area, the state-space S,

which includes the trapping array. The size of S must be large enough that no animals captured

on the trapping array have a probability of being captured outside of S. A second group of

observation models simulates detection probability of individuals within S. Observation mod-

els include a detection function and a capture encounter model and provide two basic parame-

ters: 1) λ0, the detection probability when the distance between an animal’s home range center

and camera trap equals zero; and 2) σ, which represents the spatial scale at which detection

probability decreases.

Bayesian-SECR models use data augmentation that consists of adding an extra number of

individuals M with “all-zero” capture histories. M is assumed to contain the true population

number, N, within S. In the context of Bayesian inference, M can be interpreted as an upper

bound of an uninformative uniform prior (0, M) for N [52,53]. SPACECAP provides estimates

of population size in the larger state-space (Nsuper), Density (DSECR), and ψ, which is the frac-

tion of M that actually represents the true population [53].

For each site, we ran null models that described the detection function with a half-normal

distribution and capture encounters with a Bernoulli process. To define S we used a 15-km
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buffer around each trap array envelope, with potential individual home range centers distrib-

uted uniformly at a density of one per km2. Potential home range centers were associated with

a dummy variable of habitat suitability (i.e., 1 for suitable, 0 otherwise). All data used for jaguar

density estimation with SPACECAP are available in S2 Data. For data augmentation we used

20–40 times the number of individuals observed in each site (S2 Table). We ran MCMC simu-

lations with a burn-in period of 50%, a thinning rate of 10 and increased the number of itera-

tions progressively, from 50,000 to 600,000, until convergence of parameters was achieved (S2

Table). We evaluated model convergence with the z-statistic derived from the Geweke’s diag-

nostic on the Markov chain Monte Carlo analysis; values of the z-statistic between -1.6 and 1.6

indicate model convergence [53].

For our second approach we estimated density as: D ¼ N̂
ETA, where N̂ is an estimate of popu-

lation size derived from a capture-recapture model of closed populations, and ETA is an esti-

mate of effective trapping area. We estimated N̂ with program CAPTURE [55] and used the

Mh model with a jackknife estimator to allow for different capture probabilities among indi-

viduals, which has more biological meaning than assuming capture homogeneity [56]. Estima-

tion of N̂ has two critical assumptions: 1) demographic closure (i.e., no migration, births or

deaths) during the study period; and 2) all individuals have a probability greater than zero of

being captured [57]. We developed one matrix per site where rows corresponded to i individu-

als identified at each site and columns to j trapping occasions. A trapping occasion was defined

as three consecutive trapping days (i.e., total of 30 trapping occasions per site). The entry in

the Xij matrix was 1 if an individual was recorded during a trapping occasion and 0 otherwise

(S2 Data).

The N̂=ETA method has been widely used to estimate jaguar density in other areas, despite

its limitations, and thus facilitates comparisons across studies [58]. Estimates of density from

N̂=ETA are dependent on trap spacing and the number of recaptures of individuals [59],

which can be problematic when studying large felids that have large home ranges and naturally

low abundance. Also, although estimation of N̂ is straightforward, estimation of ETA is diffi-

cult when sampling areas have no physical boundaries. To address this problem, a boundary

strip often is placed around the sampling area that equals half or the full mean maximum dis-

tance moved (MMDM) by individuals derived from captures of individuals at different traps

[56,60,61]. We used the full MMDM as a buffer around each station because this buffer pro-

vides more conservative density estimates and is supported by telemetry and simulation stud-

ies of jaguar density [60,62]. To estimate MMDM we used the pooled maximum distances of

all study sites and excluded recaptures of individuals at the same stations. This MMDM was

6.08 ± SE 0.73 km estimated from 15 jaguars. We calculated the standard error of density with

the formula provided in Karanth and Nichols [56].

Results

We obtained a total of 4,565 independent photographs of terrestrial mammals and birds with

body size�1kg, corresponding to 24 species of mammals (3,454 photographs) and 5 species of

birds (1,111 photographs; S3 Table).

Prey availability

Accessibility of the forest to humans was an important predictor of occurrence for 7 of the 8

prey species analyzed (Table 2; S1 Appendix). For all species except black agouti, best-fit mod-

els of occupancy included distance to settlements as a covariate with a positive coefficient,

indicating that the further the distance from settlements the higher the occurrence of prey.
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Distance to roads and rivers also was an important predictor of occurrence of collared pecca-

ries, and type of terra firme (ridge vs. valley) was included in best-fit models for the two large

rodents and brown brocket deer (Table 2; S1 Appendix). At the least accessible sites, Lorocachi

and Tiputini, occurrences of the five species of ungulates were notably higher than in the most

accessible sites, Keweriono and Maxus Road (Fig 2). The most extreme case was white-lipped

peccaries which were never detected in Keweriono and scarcely detected in the Maxus Road,

but exhibited an occupancy probability� 0.75 at other sites. Also, the occurrence of armadillos

and pacas was 15–50% higher in the two least accessible sites. In contrast, occurrence of agou-

tis did not differ with accessibility of sites to humans (Fig 2).

Prey biomass also declined as human access increased. Overall mean prey biomass was

greater by a factor of 2.0–4.5 at the two sites with lowest human access as compared to the high

access sites (Kruskal-Wallis X2 = 52.43, df = 3, P< 0.001, Table 3). These differences were

driven by 2.5–7.8 fold changes in the total biomass of ungulates between low access and high

access sites (Kruskal-Wallis X2 = 55.69, df = 3, P< 0.001, Table 3). For example, biomass of

white-lipped peccaries was 15 and 46 times higher in Lorocachi and Tiputini, respectively,

than in Maxus Road. Biomass of collared peccaries was 2–3 times higher in the two most iso-

lated sites than in the most accessible sites (S3 Table). Biomass of non-ungulate prey species

was similar among all 4 sites (Kruskal-Wallis X2 = 0.84, df = 3, P = 0.839; Table 3).

We observed a positive relationship of ungulate prey biomass with distance to settlements

(r = 0.71; P< 0.001; HDI95 = 0.61 to 0.79; Fig 3A) and distance to roads (r = 0.34; P< 0.001;

HDI95 = 0.21 to 0.48; Fig 3B), and a marginally significant relationship with access to rivers

(r = 0.19; P = 0.06, HDI95 = 0.02 to 0.33; Fig 3C).

Jaguar abundance in Yasunı́

Density estimates were based on a total of 59 captures that corresponded to 30 adult jaguars

(18 males, 7 females and 5 un-sexed animals, S4 Table). A total of 13 jaguars were captured in

Lorocachi (our most isolated study site), 6 in Tiputini, 8 in Keweriono and 3 in Maxus Road

(our most accessible study site). Both, the spatially-explicit and the N̂=ETA methods provided

similar results. For SECR analyses, we achieved convergence for Nsuper and ψ at all sites but not

Table 2. Occupancy models for jaguar prey in Yasunı́. Untransformed estimates of coefficients for covariates β (SE) to predict prey probability of site

occupancyΨ as a function of: distance to nearest road or river (RR), distance to nearest settlement (ST) and habitat (H). Detection probability p is modeled as

a function of distance between paired cameras (DC) or as constant (.).

Species,

best-fit model

Intercept Ψ βRR βST βH Intercept p βDC

White-lipped peccary, Ψ(ST)p(DC) -5.73 - 0.77 - -2.78 0.19

Collared peccary,

Ψ(RR + ST)p(DC)

-2.26 1.63 0.43 - -1.49 0.10

Amazonian tapir,

Ψ(ST)p(DC)

-0.88 - 0.20 - -3.13 0.21

Red-brocket,

Ψ(ST)p(DC)

0.59 - 0.13 - -3.49 0.30

Amazonian brown-brocket,

Ψ(ST + H)p(.)

-1.38 - 0.13 -1.03 -1.62 -

Paca,

Ψ(ST + H)p(.)

0.14 - 0.14 -1.37 -1.52 -

Black agouti,

Ψ(H)p(.)

1.91 - - -0.82 -0.52 -

Armadillos,

Ψ(ST)p(DC)

0.01 - 0.07 - -0.60 -0.09

https://doi.org/10.1371/journal.pone.0189740.t002
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for σ and λ0 (S5 Table). Density decreased from 5.44 ± SD 2.04 individuals/100 km2 in our

least accessible site to 0.29 ± SD 0.26 individuals/100 km2 in our most accessible site (Fig 4; S6

Table). For the N̂=ETA method we obtained effective trapping areas that varied from 458–486

km2 (S6 Table) and jaguar densities followed a similar pattern to SECR analyses, with a maxi-

mum density of 3.91 ± SE 1.11 and a minimum of 0.65 ± SE 0.26 individuals/100 km2 in our

Fig 2. Probability of site occupancy of eight important jaguar prey species at four sites in Yasunı́ Biosphere Reserve. Sites are arranged from least

to most accessible (dark to light). As a point of clarification, white-lipped peccaries were never recorded in camera traps at Keweriono, however, occupancy

models predict a small probability of occurrence of this species at this site based on covariates.

https://doi.org/10.1371/journal.pone.0189740.g002

Table 3. Biomass of jaguar prey at four sites in Yasunı́ Biosphere Reserve. Data are the average of biomass indexes (kg/day) for camera trap stations

at each site. Lorocachi and Tiputini are the most isolated sites and Keweriono and Maxus Road are the most accessible sites.

Study sites

Biomass Lorocachi (n = 26) Tiputini (n = 25) Keweriono (n = 23) Maxus Road (n = 26)

All prey species 10.23 ± 7.06 16.57 ± 7.13 3.65 ±2.00 4.97 ±3.51

Ungulates 8.4 ± 6.9 14.73 ± 6.98 1.90 ± 1.85 3.28 ± 3.06

Non-ungulates 1.84 ± 1.14 1.83 ± 0.94 1.75 ± 0.88 1.69 ± 1.13

https://doi.org/10.1371/journal.pone.0189740.t003
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least and most accessible sites, respectively (Fig 4; S6 Table). The assumption of demographic

closure for non-spatial models held for all four sites (S6 Table).

Discussion

We show that facilitation of hunter access to a natural landscape can lead to development-

induced impacts on predators and prey that end with reducing abundance of jaguar, the top

predator of our study system. Our findings clearly support our first hypothesis that higher

landscape accessibility (i.e., proximity to settlements, roads and rivers) to hunters leads to

reduction of prey. These results are consistent with studies that show hunting effort is higher

near settlements or sources of access [18,19,63]. Occurrence and biomass of the two species of

peccaries, the species most harvested by Waorani [19,32–34], along with tapir and two species

of brocket deer, were reduced in areas highly accessible to hunters. This pattern was evident

even though our study sites were within a large relatively intact forest where source-sink

dynamics could have diluted our capacity to detect such patterns [17].

Our second hypothesis, that reduction of large game from hunting would cause local

declines in jaguar density, was framed based on the close relationship observed between abun-

dance of large-bodied prey and other large cats [24,26]. Although jaguars are opportunistic

predators, they are known to preferentially use large prey when available such as capybara

(Hydrochoerus hydrochaeris), caiman (Caiman crocodilus), and especially white-lipped and

Fig 3. Relationship between ungulate prey biomass and landscape accessibility measured as distance from camera trap stations (km) to

settlements (A), roads (B) and rivers (C). Data points are an index of ungulate biomass (kg/day) at each station.

https://doi.org/10.1371/journal.pone.0189740.g003
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collared peccaries [39]. Therefore, we expected high jaguar densities at sites where access to

hunters is limited and ungulate populations are high. The relationship between jaguar abun-

dance and human access followed our predictions, and estimates of jaguar density indicated

that jaguar abundance in our least accessible site, Lorocachi, was 6–18 times higher (estimates

from N̂=ETA and SECR, respectively) than in our most accessible site, Maxus Road. These

results, coupled with the fact that prey occurrence and biomass were significantly lower in the

most accessible sites, support our second hypothesis. Alternatively, if poaching of jaguars is

higher in sites that are more accessible to hunters, consequences of reduction of the prey base

for jaguars and direct hunting of jaguars could be confounded. We cannot completely rule out

these confounding effects without more data on jaguar mortality; however, this would not

change our most important conclusion, that prey and predator abundance decline with

human access. Also, our study sites offered an advantage over many other areas in terms of

minimizing the confounding of effects of prey decline and direct mortality on jaguars. The

Waorani and Kichwa, primary inhabitants of the region, did not persecute jaguars systemati-

cally at the time of this study. For the Waorani, the jaguar is still a strong cultural symbol; they

believe warriors become jaguars in an afterlife and that shamans become jaguars when they

enter the forest to acquire powers for healing [64]. Hunting at the Maxus Road site was prac-

ticed only by Waorani who live in this area and in 14 months of hunting surveys along this site

we only recorded one adult male killed and one kitten trapped by Waorani [19]. Also, we did

not hear about jaguars killed in the other study sites during our 3 years of fieldwork. The lack

of evidence for anthropogenic mortality of jaguars supports our conclusion that the negative

relationship between jaguar density and human access likely results from reduction in prey

when areas become accessible to hunters.

Fig 4. Jaguar density estimates at four sites in Yasunı́ Biosphere Reserve. Sites are arranged from least

accessible to most accessible. Error bars correspond to SD and SE for Bayesian-SECR and N̂=ETAmethods

respectively.

https://doi.org/10.1371/journal.pone.0189740.g004
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Human access is superimposed on a heterogeneous landscape where other factors also con-

tribute to differences in fauna among sites. Prey biomass, especially white-lipped peccaries,

was particularly high in Tiputini. Across Amazonia, white-lipped peccaries are strongly associ-

ated with wetlands dominated by the palm Mauritia flexuosa [65,66]. Palm wetlands are more

common at Tiputini and the heavily hunted Maxus Road site than at our other sites (15.7%

and 8.3% of the area of trap arrays, respectively, vs.< 1%; [67]). The abundant palm forests

may explain the high biomass of white-lipped peccaries in Tiputini where human hunting was

low. In contrast, harvesting of white-lipped peccaries by Waorani on Maxus Road is intense

(>50% of total biomass of harvested bushmeat; [19]), and the occurrence and biomass of this

species was low in our surveys even though highly favorable habitat was present.

Unexpectedly, although Tiputini had the highest occurrence and biomass of ungulates, this

site did not have the highest jaguar density. Some plausible explanations include: 1) behavioral

factors [68], for example, deterrence of other jaguars by a dominant male; 2) heterogeneity in

detection probability [69] caused by differences in landscape composition across sites and not

modeled because of limited data; and 3) edge effects associated with the location of this site at

the reserve boundary [70]; during our research at Tiputini we observed commercial hunters

entering our study area through the Tiputini River, and it is possible jaguars were poached for

their parts in this area.

Across the range of jaguars, a key challenge for understanding threats to jaguar populations

is the logistical difficulty of obtaining robust density estimates. We followed recent recommen-

dations for analysis of camera trap data for jaguars [62], but our estimates of jaguar density

should be used with caution (e.g., for comparison across studies) because, as with most studies,

we were still limited by small samples sizes particularly at heavily hunted sites. As a result of

the large home ranges of jaguars and low densities, sample designs that record large numbers

of individuals and have low variance estimates are rare [62]. For example, to date, the jaguar

survey with the largest spatial extent covered 1,320 km2, deployed 119 camera trap stations,

and only captured 10 individuals [71], which are fewer individuals than we recorded at our

least accessible site (13 jaguars).

If roads networks—and their associated colonization processes—continue to expand, the

chances of conserving jaguars in Yasunı́ will be significantly reduced. Population viability

assessments for jaguars indicate that a population of 650 individuals has a 97–100% probability

of persisting for 200 years with minimal loss of heterozygosity [72]; this population number is

similar to effective population sizes generally suggested for maintaining evolutionary potential

in perpetuity [73,74]. If jaguar density across Yasunı́ Biosphere Reserve (c. 18,000 km2) is simi-

lar to our highest estimates (3.9–5.4 individuals/100 km2), this area could have high probability

of sustaining a large enough population (i.e., 700–1,000 individuals) to meet these viability tar-

gets. However, maintaining this population requires addressing the problems of road expan-

sion and associated hunting.

Jaguar conservation efforts to date include identification of key areas for jaguar conserva-

tion across the species range (Jaguar Conservation Units, JCUs [5]) and an ambitious initiative

to connect these JCUs through a regional network of biological corridors [75]. Our results

point to the need to coordinate these initiatives with local governments so that development

activities such as road building are minimal near JCUs and jaguar corridors. In addition to

landscape-scale conservation initiatives, we also believe significant effort needs to be invested

in the management of jaguar prey at local levels. For example, populations of white-lipped pec-

caries, one of the most important prey for jaguar, are threatened throughout their range by

hunting and habitat loss [76,77]. However, current information on management alternatives

for peccaries and other prey is limited. We conducted a rapid search in Web of Science using

the keywords “peccary/ies + management”, and obtained 64 citations. Most studies focused on
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ecology of peccaries and effects of hunting by traditional or indigenous groups. Only two

research projects examined alternative management strategies for peccaries; one presenting

the possibility of farming peccaries to avoid overhunting [78] and another on commercializa-

tion of certified peccary pelts through community-based wildlife conservation programs

[79,80]. These results substantiate the need to report and assess current wildlife management

efforts and develop new alternatives for game management in the region.

Conclusions

In conclusion, worldwide, space is an important limiting factor for the conservation of large

carnivores and, as natural habitats are reduced, large protected areas become even more cen-

tral to their survival [4,14,15,70]. Road construction within and near protected areas leads to

increased accessibility of hunters, overharvest of prey, and reduced potential of these lands to

sustain viable populations of large predators. These development-induced ecological impacts

also undoubtedly extend beyond population-level effects on jaguar and prey. Substantial evi-

dence demonstrates that reduction in apex predators can alter composition, structure and

functionality of entire ecosystems [1,2,81]. Moreover, large carnivores such as jaguar are

important umbrella species whose conservation can contribute to the maintenance of co-

occurring mammal species [82]. In order to guarantee functional ecosystems for future genera-

tions, where large carnivores are present, governments and funders of government initiatives

should carefully evaluate placement of new development activities and infrastructure across

the landscape, and exclude protected areas from these activities.
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