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Abstract
Hemorrhagic diseases caused by epizootic hemorrhagic disease virus or by bluetongue virus (BTV) are the most important 
orbivirus diseases affecting ruminants, including white-tailed deer (WTD). Bluetongue virus is of particular concern for 
farmed WTD in Florida, given its lethality and its wide distribution throughout the state. This study reports the clinical 
findings, ancillary diagnostics, and genomic characterization of two BTV serotype 1 strains isolated from two farmed 
WTD, from two different farms in Florida in 2019 and 2022. Phylogenetic and genetic analyses indicated that these two 
novel BTV-1 strains were reassortants. In addition, our analyses reveal that most genome segments of these strains were 
acquired from BTVs previously detected in ruminants in Florida, substantiating their endemism in the Southeastern U.S. 
Our findings underscore the need for additional research to determine the genetic diversity of BTV strains in Florida, their 
prevalence, and the potential risk of new BTV strains to WTD and other ruminants.
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Introduction

Deer farming is one of the fastest-growing industries in 
rural areas of the U.S. It is a significant contributor to the 
economy and vitality of rural areas, generating an annual 
revenue of approximately $7.9 billion (https://nadefa.org/). 
While multiple cervid species are farmed in the U.S. (https://
nadefa.org/), white-tailed deer (WTD; Odocoileus virginia-
nus) is the most farmed deer [1]. In Florida, there are over 
300 registered game farms, and most of them breed WTD 
for the purpose of producing animals that are sought after 
by hunters for their impressive antlers, size, and appearance.

White-tailed deer in Florida are exposed to disease risks 
due to the humid subtropical climate and prime environ-
mental conditions for arthropod vectors and pathogens [2]. 
Multiple orbiviruses within the genus Orbivirus (Family 
Reoviridae) have been isolated and identified from diseased 
Florida WTD, including Big Cypress orbivirus, bluetongue 
virus (BTV), CHeRI orbiviruses 1–3, epizootic hemorrhagic 
disease virus (EHDV; serotypes 1, 2, and 6), mobuck orbivi-
rus, and Yunnan orbivirus [3–12]. BTV is of particular con-
cern to farmed WTD in Florida, given its severe impacts and 
its wide distribution throughout the state. A recent surveil-
lance study involving 539 post-mortem specimens collected 
from 55 deer farms across Florida between 2016 and 2020 
showed the prevalence of BTV and BTV/EHDV coinfection 
at 16% and 10%, respectively, by RT-qPCR. Additionally, 
BTV was found in 62% (18/29) of the counties sampled, 
extending from north to south Florida [12].

Bluetongue virus is the causative agent of bluetongue dis-
ease and is mainly transmitted by Culicoides biting midges 
[13]. Historically, the epidemiological cycle involved wild 
African ruminant species and local Culicoides spp. in sus-
taining the virus cycle. However, the expansion of agricul-
ture and the introduction of African cattle into other regions, 
including the Americas, Europe, the Middle East, Southern 
Asia, and Oceania, led to the expansion of its host range, 
including highly susceptible species such as WTD [14]. 
Ruminant species susceptible to BTV infection include 
antelope, buffalo, cattle, deer, elk, goat, and sheep [14]. The 
clinical signs of bluetongue disease vary between species, 
from inapparent to fatal. Sheep and deer are the most prone 
to developing severe clinical signs, including acute hemor-
rhagic disease and death [15].

The BTV genome consists of 10 linear double-stranded 
RNA segments that encode seven structural (VP1 - VP7) 
and at least four nonstructural (NS1, NS2, NS3/3a, and 
NS4) proteins [16–18]. The virus core consists of nonstruc-
tural proteins that are associated with transcriptase com-
plexes, including VP1 (RNA-dependent RNA polymerase), 
VP4 (capping enzyme), and VP6 (virus helicase), which are 
enclosed in layers of VP3 and VP7 proteins [16, 19]. The 

BTV core is surrounded by the outer capsid layer consisting 
of VP2 and VP5 proteins. Of the virus proteins encoded by 
the BTV genome, VP2 and VP5 are the most variable and 
are used to determine the serotype of various BTV strains 
[16]. To date, at least 32 distinct BTV serotypes have been 
identified [20–26]. The status of BTV serotypes in the U.S. 
has recently been updated, and they are classified as either 
established (3, 6, 10, 11, 12, 13, and 17), reported (1, 2, 5, 9, 
14, 15, 18, 19, 22, and 24), or not reported (4, 7, 8, 16, 20, 
21, 23, 25, and 26) [15]. In the Southern U.S., 11 established 
or reported BTV serotypes (1, 3, 5, 6, 9, 12, 14, 18, 19, 22, 
and 24) have been detected since 1999 [15, 27].

Genetic diversity among BTV strains can be attributed to 
virus reassortment and mutation [28, 29]. Reassortment is a 
genetic process that occurs when two or more virus strains 
infect the same host cell and exchange their gene segments 
to generate virus progeny with unique genome combina-
tions [28, 30]. The emergence of new BTV strains through 
reassortment likely stems from interactions between differ-
ent endemic BTVs or the importation of novel BTVs from 
other regions. For example, BTV-2, a serotype previously 
confined to the Southeastern U.S., was isolated in a Cali-
fornia heifer in 2010 and was found to be a reassortant of 
BTV-2 and BTV-6 [27, 31]. Similarly, Schirtzinger et al. 
[32] analyzed 22 strains of BTV originating from the U.S., 
the Caribbean, and South Africa. Their findings indicate 
the presence of at least two distinct lineages of reassortant 
BTV-3 strains circulating in the U.S. Given the significant 
mortality and economic losses attributed to BTV disease, 
specifically in farmed animals such as WTD, it is essential 
to better understand BTV ecology and genetic diversity. 
This study reports the clinical findings, ancillary diagnos-
tics, and genomic characterization of two novel reassortant 
BTV-1 strains from euthanized WTD on Florida farms in 
2019 and 2022.

Materials and methods

Clinical history and sample collection

On February 2nd, 2019, a 2-year-old doe (animal ID: 
OV1049) was found recumbent and obtunded. The farmer 
treated the animal with one dose of 2 cc Draxxin (tulathro-
mycin), 2 cc dexamethasone, and 12.5% Sulfadived (sul-
fadimethoxine) water solution. After 4 days without any 
improvement in its condition, the animal was euthanized 
[33]. University of Florida (UF) technicians performed a 
field necropsy following guidelines provided by CHeRI 
(https://wec.ifas.ufl.edu/cheri/diagnostics/ [accessed on 
29 October 22]) soon after the animal was euthanized. On 
August 19th, 2022, a 3-month-old buck fawn (animal ID: 
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OV1706) exhibited ataxia earlier in the day that progressed 
until the animal became recumbent and obtunded. The buck 
was euthanized and a field necropsy was performed by UF 
technicians the following day.

Lung tissue (from OV1049 and OV1706) and fecal sam-
ples (from OV1049) were submitted to the UF Microbiol-
ogy, Parasitology, and Serology Diagnostic Laboratory of 
the College of Veterinary Medicine for bacterial and fungal 
isolation and identification, and the identification of para-
sites. Spleen samples from OV1049 and OV1706 were fro-
zen at -80 °C for subsequent virus isolation and molecular 
virus screening. This work was approved by the UF Institu-
tional Animal Care and Use Committee (IACUC Protocol 
Numbers 201609390 and 201909390).

RT-qPCR detection of BTV, EHDV, EEEV, and WNV 
vRNA

Total RNA was extracted from spleen tissues collected from 
animals OV1049 and OV1706 using a RNeasy Mini kit 
(Qiagen) following the manufacturer’s protocol. The RNA 
extracts were then screened for BTV, eastern equine enceph-
alitis virus (EEEV), EHDV, and West Nile virus (WNV) 
using a VetMAX Plus One-Step RT-qPCR kit (Applied Bio-
systems) as described previously [4, 34–36].

Virus isolation in cultured cells

Virus isolation was attempted using the Vero E6 (Cercopi-
thecus aethiops [African green monkey kidney, ATCC CRL 
1586]) and C6/36 (Aedes albopictus [Asian tiger mosquito, 
ATCC CRL1660]) cell lines, as previously described [4]. 
Spleen tissues collected from animals OV1049 and OV1706 
(previously stored at -80 °C) were thawed, aseptically 
minced using forceps, then homogenized to generate 10% 
w/v cell-free suspension homogenates in sterile phosphate-
buffered saline (PBS) using a sterile manual tissue grinder 
(Fisher Scientific). The resulting homogenates were cleared 
of debris by low-speed centrifugation (5 min at 1500× g) 
and aseptically transferred to sterile polypropylene cen-
trifuge tubes. The supernatants were then filtered through 
a sterile 0.45 μm pore-size polyvinylidene fluoride filter 
(Fisher Scientific). A 0.5 mL aliquot of the filtrate of each 
sample was separately inoculated onto confluent Vero E6 
and C6/36 cells in 25 cm2 culture flasks. The cells were re-
fed every 3 days and observed daily for virus-induced cyto-
pathic effects (CPE) for 30 days. Non-inoculated cells were 
maintained in parallel as negative controls. When no CPE 
was observed by day 30 post-inoculation, a second passage 
was performed, and the cells were observed for another 30 
days before being considered negative by virus isolation. 
After CPE were observed in 50% of the infected cells, they 

were scraped and harvested along with the spent cell growth 
medium and stored at -80 °C for further analyses.

Next-generation sequencing (NGS)

The frozen spent cell growth media from cells inoculated 
with OV1049 and OV1706 spleen homogenates were 
thawed and spun to remove cellular debris prior to extract-
ing vRNA from virions using a QIAamp Viral RNA Mini kit 
(Qiagen) according to the manufacturer’s protocol. cDNA 
libraries were generated using a NEBNext Ultra RNA 
Library Prep kit (New England Biolabs) and sequenced 
on an Illumina MiSeq sequencer (Illumina). Host Chlo-
rocebus aethiops sequences (GenBank accession number 
MNAF00000000.2) and Aedes albopictus sequences (Gen-
Bank accession number MNAF00000000.2) were removed 
using Kraken v2.0 [37]. After removing the host sequences, 
a de novo assembly of the remaining paired-end reads was 
performed using SPAdes v3.15.3 [38]. The assembled con-
tigs were then subjected to BLASTX searches against the 
National Center for Biotechnology Information (NCBI) 
non-redundant protein database using OmicsBox v1.2 (Bio-
Bam). The 5′ end of the coding sequence of segment 1 of 
sample OV1049 was determined using a 5′ Rapid Ampli-
fication for cDNA End (RACE) PCR Kit (Roche Diagnos-
tics) and Sanger sequencing.

Phylogenetic and genetic analyses

The nucleotide sequences of all ten coding sequences were 
retrieved for 85 BTV strains, including the BTV isolated 
from animals OV1049 and OV1706 in this study, and one 
EHDV-6 (outgroup) (Supplementary Table S1). For each 
coding sequence, the alignment of nucleotide sequences 
guided by amino acid translations was performed within 
Geneious Prime v2022.2.2 using MAFFT [39]. The Maxi-
mum Likelihood phylogenetic trees were constructed in 
IQ-TREE with 1000 non-parametric standard bootstraps 
performed to test the robustness of the clades [40]. In addi-
tion, all coding sequences of the BTV isolated from OV1049 
and OV1706 were compared to each other and against the 
NCBI non-redundant nucleotide database using BLASTN 
analyses.
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Virus isolation

Virus-induced CPE were not observed in Vero E6 or C6/36 
cells inoculated with spleen homogenate from animal 
OV1049 within a 30-day observation period. However, CPE 
were observed after 14 days upon second passage in Vero 
E6 cells. In contrast, CPE were observed upon primary pas-
sage by 12 days post-inoculation of C6/36 cells with spleen 
homogenate from animal OV1706.

Genome sequencing, phylogenetic, and genetic 
analyses

De novo assemblies of samples OV1049 and OV1706 
(GenBank accession nos. OQ847475- OQ847484 and 
OQ847485- OQ847494, respectively) resulted in the com-
plete gene coding sequences for all segments, except for 
segment 1 of OV1049 which was obtained by RACE PCR. 
Phylogenetic analyses based on coding sequences of seg-
ments 2 and 6 (VP2 and VP5 genes) revealed the viruses 
isolated from samples OV1049 and OV1706 as BTV sero-
type 1, hereafter referred to as BTV-1 strain OV1049 and 
BTV-1 strain OV1706, respectively. In addition, segment 2 
analysis supported BTV-1 strains OV1049 and OV1706 as 
sister species, whereas segment 6 analysis could not resolve 
their relationship (Fig. 2). Analysis based on segment 1 
(VP1 gene) grouped BTV-1 strains OV1049 and OV1706 
within a clade formed by BTV strains from Florida, Loui-
siana, Jamaica, Panama, Honduras, and South Africa (Fig. 
S1). Segment 3 (VP3 gene) analysis supported BTV-1 
strains OV1049 and OV1706 as members of a clade of 

Results

Necropsy findings, bacterial isolation, parasitology, 
and RT-PCR detection of BTV, EEEV, EHDV, and WNV 
RNA

The doe (animal ID: OV1049) exhibited overall emacia-
tion, along with the presence of dark-green, almost black, 
soft feces, and a thicker, hyperemic mucosa, with a foamy 
content of upper small intestine, suggestive of upper intes-
tinal inflammation (enteritis). The doe also presented with 
pale gums and vaginal mucosa (suggestive of anemia) and 
mild white catarrhal discharge from both nostrils (Fig. 1A). 
In addition, the left cranial lobe of the lung presented with 
red, firm, depressed areas with a lobular distribution from 
the cranial to the caudal part of the lobe (Fig. 1B), which 
suggests inflammation of the respiratory tract (pneumonia). 
Pseudomonas aeruginosa was identified through aero-
bic culture of lung tissue, and Trichostrongylus ova were 
detected in the fecal sample.

The buck fawn (animal ID: OV1706) presented with 
mild, multifocal petechia to purpuric lesions that were more 
prominent in the right lung, with the right cranial lobe of 
the lung showing red, firm, and depressed areas (Fig. 1C). 
Streptococcus ruminantium and Bibersteinia trehalose was 
identified through aerobic culture of lung tissue. Both ani-
mals showed no sign of lesions in the liver, heart, spleen, 
kidney, thoracic, or abdominal cavities. The RNA extracts 
from spleen of both animals tested positive for BTV and 
negative for EHDV, EEEV, and WNV.

Fig. 1 Gross observations of farmed white-tailed deer naturally 
infected with the bluetongue virus serotype 1 strain OV1049 (A and 
B) and OV1706 (C). (A) Mild white catarrhal nasal discharge; (B) 

Mild cranial pneumonia of the left lung; (C) Mild, multifocal, petechia 
to purpuric lesions, with mild cranial lobar pneumonia of the right lung
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identity (99.26%) to BTV-17 strain S7668 from South 
Africa. In eight of the ten segments, BTV-1 strain OV1706 
showed 97.27% or greater sequence identity to other BTV 
strains from Florida (Table 2). Segment 1 (VP1) showed the 
highest sequence identity (95.91%) to BTV-17 strain S7668, 
and segment 9 (VP6) showed the highest sequence identity 
(91.32%) to BTV-4 strain ARG2002/01 from Argentina. 
Comparison between BTV-1 strains OV1049 and OV1706 
showed that segments 2 and 6 (VP2 and VP5 genes) were 
nearly identical (99.31% and 99.30%, respectively), and 
the other segments ranged between 89.58% and 98.86% 
(Table 2).

Our analyses supported BTV-1 strains OV1409 and 
OV1706 as reassortants. BTV-1 strains OV1049 and 
OV1706 share the same origin (i.e., BTV-1 strain USA2010/
FL 10-044273) for segments 2 and 6 (Fig. 2). In addition, 
four segments of BTV-1 strain OV1409 (Segments 4, 8, 9, 
10) and three segments of BTV-1 strain OV1706 (Segments 
4, 5, 8) showed reassortment with BTV strains from Flor-
ida (bootstrap values ≥ 80%). The remaining segments of 
BTV-1 strains OV1409 (Segments 1, 3, 5, 7) and OV1706 

BTV strains from Florida (Fig. S1). Analyses of segments 
4, 7, and 8 (VP4, VP7, and NS2 genes) supported BTV-1 
strains OV1049 and OV1706 as members of clades consist-
ing of BTV strains from Florida and Louisiana (Fig. S1, 
S2, and S3). Analysis of segment 9 (VP6 gene) supported 
BTV-1 strain OV1049 as the sister species to BTV-11 strain 
USA2013/FL 13-037190 from Florida; however, the same 
gene tree could not resolve the relationship of BTV-1 strain 
OV1706 to other BTV strains (Fig. S3). Segment 5 (NS1 
gene) analysis showed that BTV-1 strain OV1049 grouped 
within a clade formed by BTV strains from Florida and 
Louisiana, whereas BTV-1 strain OV1706 grouped within 
a clade consisting of BTV strains from Florida and Panama 
(Fig. S4). Segment 10 (NS3 gene) supported BTV-1 strains 
OV1706 and OV1049 as members of a large clade consist-
ing of eastern (i.e., Asia, Africa, Europe) and western (i.e., 
the Caribbean and the Americas) BTV strains (Fig. S4).

The genetic analyses showed that in nine of the ten seg-
ments, BTV-1 strain OV1049 shared 98.19% or greater 
sequence identity to other BTV strains from Florida 
(Table 1). Segment 9 (VP6) displayed the highest sequence 

Fig. 2 Maximum Likelihood cladogram depicting the relationships of 
BTV-1 strains OV1049 and OV1706 to 83 other BTV strains and 1 
EHDV strain based on the nucleotide sequence alignment of the VP2 
and VP5 genes. The included BTV and EHDV strains are indicated by 
serotype, strain/isolate, host, country, and year of isolation. Nodes with 
black circles are supported by bootstrap values ≥ 80%. The tree was 

rooted with the EHDV-6 strain OV1321. The BTV isolates OV1049 
and OV1706 are in red and bold. Strains/isolates from the U.S. are in 
blue, and strains/isolates from Central/South America and the Carib-
bean are in green. Additional metadata for each virus in the tree are 
provided in Supplemental Table S1
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disease, with substantial morbidity and death, depending on 
the virus serotype and host species, age, and immune status 
[41, 43]. Thus, diagnosis of BTV infections should not be 
based on clinical signs alone but supported by confirmatory 
laboratory testing.

Bluetongue virus serotype 1 was first identified in the 
U.S. in 2004 from a WTD fawn in Louisiana [44] and 
later in 2010 from a sheep in Florida (strain USA2010/FL 
10-044273; GenBank accession no. KX164020). Phyloge-
netic analyses based on segments 2 and 6 (VP2 and VP5 
genes) showed that BTV-1 strains from Florida (OV1409, 
OV1706, and USA2010/FL 10-044273) formed a mono-
phyletic group with the BTV-1 strains from El Salvador 
(SAL1990 502,270) and French Guiana (11 − 01 4074). The 
genome sequence of the BTV-1 identified in Louisiana is 
unavailable, and thus, its relationship to the BTV-1 strains 
found in Florida could not be determined. Recent phylody-
namic models revealed Central America and the Caribbean 
as the source of BTV introduction into North America, and 

(Segments 1, 3, 7, 9, 10) showed the highest sequence iden-
tities to BTV strains detected in Florida, Argentina, and 
South Africa; however, the phylogenetic analyses could not 
resolve the relationships of these viruses.

Discussion

The current study identified BTV-1 infection in farmed 
WTD in Florida in 2019 and 2022 through RT-qPCR, virus 
isolation, next-generation sequencing, and phylogenetic 
analyses. The common clinical signs reported in BTV-
infected animals include anorexia, conjunctivitis, coronitis, 
cyanotic tongue, depression, facial edema, nasal lesions, 
nasal discharge, ptyalism, pyrexia, and respiratory distress 
[41, 42]. However, the clinical signs associated with the 
BTV-infected WTD from 2019 and 2022 cases were non-
specific: nasal discharge, ataxia, and extreme lethargy. Blue-
tongue virus infections can result in asymptomatic to severe 

Table 1 Summary of sequence identities for all 10 complete coding sequences of the BTV-1 strain OV1049 isolated from a white-tailed deer in 
FL, USA and their comparison to BTV-1 strain OV1706.
Gene name (segment number) GC 

con-
tent 
(%)

Length 
(bp)

Top BLASTN match
Nucleotide 
identity to
OV1706 (%)

Host Serotype Strain/Isolate Iden-
tity 
(%)

GenBank 
accession 
no.

VP1 (1) 42.2 3909 94.93 Cattle BTV-3 USA2003/FL 280559-9 98.95 KY091940
VP2 (2) 43.2 2886 99.31 Sheep BTV-1 USA2010/FL 10-044273 99.62 KX164020
VP3 (3) 43.8 2706 96.42 Cattle BTV-3 USA2003/FL 280559-9 98.89 KY092129
VP4 (4) 42.7 1935 94.78 Cattle BTV-19 USA2003/FL 280559-3 98.19 KX164132
NS1 (5) 44.5 1659 89.58 WTD BTV-11 USA2013/FL 13-037190 99.76 KM580475
VP5 (6) 44 1581 99.3 Sheep BTV-1 USA2010/FL 10-044273 99.75 KX164024
VP7 (7) 47.1 1050 98.86 Sheep BTV-1 USA2010/FL 10-044273 99.52 KX164025
NS2 (8) 44.6 1065 97.46 WTD BTV-11 USA2013/FL 13-037190 99.15 KM580482
VP6 (9) 49.3 990 90 Unknown BTV-17 S7668 96.26 JX272457
NS3 (10) 42.8 690 96.09 Cattle BTV-19 USA2003/FL 280559-3 99.57 KX164138
WTD = white-tailed deer

Table 2 Summary of sequence identities for all 10 complete coding sequences of the BTV-1 strain OV1706 isolated from a white-tailed deer in 
FL, USA.
Gene name (segment number) GC 

content 
(%)

Length 
(bp)

Top BLASTN match
Host Serotype Strain/Isolate Identity 

(%)
GenBank 
accession 
no.

VP1 (1) 42.2 3909 Unknown BTV-17 S7668 95.91 JX272449
VP2 (2) 43.2 2886 Sheep BTV-1 USA2010/FL 10-044273 99.48 KX164020
VP3 (3) 43.8 2706 Cattle BTV-2 USA1982/FL 97.27 MW456739
VP4 (4) 42.7 1935 WTD BTV-11 USA2013/FL 13-037190 99.28 KM580476
NS1 (5) 43.5 1659 Cattle BTV-2 USA2003 98.49 KF986502
VP5 (6) 44 1581 Sheep BTV-1 USA2010/FL 10-044273 99.18 KX164024
VP7 (7) 47.1 1050 Sheep BTV-1 USA2010/FL 10-044273 99.14 KX164025
NS2 (8) 44.8 1065 WTD BTV-18 USA2014/FL 15-008010 99.34 KX164126
VP6 (9) 49.5 990 Cattle BTV-4 BTV-4/ARG2002/01 91.32 EU220291
NS3 (10) 43.9 690 Sheep BTV-14 USA2003/FL 279,313 98.26 KX164118
WTD = white-tailed deer
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In conclusion, we isolated and genetically characterized 
two novel reassortant BTV serotype 1 strains from diseased 
WTD on Florida farms in 2019 and 2022. Our analyses 
supported BTV-1 strains OV1049 and OV1709 as endemic 
strains to the Southeastern U.S. This U.S. region is particu-
larly vulnerable to the emergence of novel BTV strains that 
affect ruminants due to the historical livestock trading prac-
tices and geographic location that facilitates long distance 
movement of disease-carrying midges by wind. Hence, con-
tinued surveillance efforts are needed to determine the prev-
alence and potential threat of BTV strains that may pose to 
the health of farmed deer and other ruminants.
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