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Background: Antimicrobial resistance (AMR) is a critical public health issue; 
with many experts suggesting we  are already in a post-antibiotic era. The 
widespread use of antibiotics in agriculture, human, and veterinary medicine 
influences the spread of antibiotic resistance genes (ARGs) among humans, 
animals, and the environment. In Florida, white-tailed deer (WTD; Odocoileus 
virginianus) farming plays a vital role in the economy and environment, but the 
use of antimicrobials in farmed WTD, along with their proximity to urban and 
agricultural areas, increases the pressure for AMR development. Understanding 
the resistance patterns in these deer populations is crucial for their health, as well 
as for wildlife and ecosystems. This research aimed to investigate the resistome 
of Florida-farmed WTD. Escherichia coli, a commonly used indicator bacterium, 
was chosen to study AMR due to its pathogenicity and ease of culture.
Methods: Samples from various tissues were collected during necropsy. 
Escherichia coli was isolated and cultured, and whole-genome sequencing 
was performed using a high-throughput NovaSeq platform. The AMR++ v 3.0 
pipeline and ResistoXplorer tool were employed for data normalization and 
analysis. Antimicrobial susceptibility testing of the E. coli isolates was conducted 
using the Kirby-Bauer disk diffusion method on Mueller-Hinton agar, based on 
the guidelines and recommendations in the CLSI VET01S.
Results: A total of 362 unique ARGs were identified, conferring resistance to 
12 antimicrobial classes via 19 mechanisms. The most abundant classes were 
ß-lactams, multi-drug resistance, and bacitracin. Antimicrobial susceptibility 
testing showed that 30% of E. coli isolates were resistant to at least one drug 
under aerobic conditions, while 68% were resistant under anaerobic conditions. 
Moreover, 15% of isolates displayed multi-drug resistance in both conditions. 
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The study also compared genotypic and phenotypic AMR profiles using kappa, 
revealing good to very good agreement for several drugs.
Conclusion: This is the first study to characterize the resistome of farmed WTD 
in Florida, providing valuable data for better management of antimicrobial use 
in these populations.
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1 Introduction

The resistome, first conceptualized by D'Costa et al. (2006) in 
response to the discovery of antimicrobial resistance (AMR) traits 
in soil bacteria, encompasses “the collection of all antibiotic 
resistance genes and their precursors in both pathogenic and 
non-pathogenic bacteria” (Wright, 2007). As neither antimicrobial 
resistance genes (ARGs) nor their bacterial hosts are confined by 
physical or operational boundaries, this broad definition 
underscores AMR’s significance as a global public health concern 
(Figure 1). Resistome characterization is critical to understanding 
ARG distribution, variation, and abundance across hosts and 
habitats. Early studies relied on culture-dependent techniques 
(Benveniste and Davies, 1973), but next-generation sequencing 

(NGS) and whole-genome sequencing (WGS) have since 
revolutionized resistome analysis (Ellington et al., 2017; Witney 
et  al., 2016; Crofts et  al., 2017). While metagenomics offers a 
powerful analytical tool, challenges such as sensitivity limitations, 
sequencing depth, and host DNA contamination persist 
(Abayasekara et al., 2017; Zhou et al., 2015). In contrast, WGS-based 
approaches for AMR analysis also present several limitations, 
including the need for pure cultures, an incomplete representation 
of the resistome, difficulties in detecting mobile genetic elements 
(e.g., plasmids and transposons) due to short-read sequencing, gaps 
in predicting phenotypic resistance, and the labor- and time-
intensive nature of the process (Sadovska et al., 2024; Zwe et al., 
2020; Weinmaier et al., 2023; Tagami et al., 2024; McDermott et al., 
2016; Fauzia et al., 2023).

FIGURE 1

Routes of AMR may be transmitted through various direct and indirect routes to humans, livestock, companion animals, the environment, and wildlife 
shown by arrows. The overall effectiveness of these channels will vary significantly depending on the type of microbe and resistance mechanism, as 
well as the environment and location. Adapted from a diagram of the intricate process presented by Woolhouse and Ward (2013).
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The prevalence of AMR bacteria is increasingly common in 
companion and food-producing animals, which is likely linked to the 
selective pressure from prolonged antimicrobial use in livestock 
production, veterinary care, and direct human contact (Agersø and 
Aarestrup, 2013; Durso and Cook, 2014). Peridomestic wildlife 
comprises species that have adapted to human-modified environments 
and persist in close proximity to humans, including those deliberately 
introduced for consumption (Haider et al., 2020). These animals often 
serve as reservoirs of antimicrobial-resistant microorganisms, 
although resistance prevalence varies across taxa and geographic 
regions (Arnold et al., 2016). This variation is influenced by several 
factors, including environmental contamination primarily from 
anthropogenic sources, which drives acquired resistance in wildlife 
(Vittecoq et al., 2016). Although clinically used antimicrobials are not 
typically found in wild environments, AMR can still occur. Resistance 
factors have been identified in remote and historically isolated 
settings, including ancient permafrost layers dating back 30,000 years 
(D'Costa et al., 2011), secluded cave ecosystems (Bhullar et al., 2012), 
and even frozen human remains from the Copper Age (Lugli et al., 
2017). Nevertheless, numerous environmental exposure pathways—
such as manure, wastewater, and pollution from areas with intense 
anthropogenic activity—can contribute to the selection and 
dissemination of resistance (Martinez, 2009).

For example, cervids often forage on croplands fertilized with 
compost, a known hotspot for ARGs, AMR bacteria, and 
antimicrobials (Rogers et al., 2018; Lima et al., 2020). Additionally, 
freshwater sources, critical to wildlife hydration, are similarly 
vulnerable to antimicrobial contamination from sewage and 
agricultural runoff (Zhu et al., 2017; Zhou et al., 2018; Cacace et al., 
2019; Nnadozie and Odume, 2019). Evidence also supports the 
significant role migratory birds play in the spread of AMR (Pinto et al., 
2010; Hasan et al., 2014). Furthermore, the host diet can influence gut 
microbiota dynamics, affecting the prevalence of AMR 
microorganisms among commensal bacteria (Williams et al., 2011). 
A predominantly herbivorous diet may account for the generally low 
levels of AMR observed in many wildlife species that graze on 
vegetation, in contrast to the higher levels seen in species with 
omnivorous or carnivorous diets (Vittecoq et al., 2016).

White-tailed deer (WTD; Odocoileus virginianus), widely 
distributed across the Americas, inhabit diverse environments, from 
natural ecosystems to urban areas (Ballash et al., 2022). As a keystone 
species, WTD influence food web dynamics, notably as prey for many 
species including the endangered Florida panther (Boughton et al., 
2020). Cervid hunting and farming in the U. S. contribute significantly 
to both the economy and ecosystem management (Anderson et al., 
2017; Brooks et al., 2015; Lantz, 1908; Hewitt, 2015; Conover, 2011). 
Deer hunting generates over $13 billion annually, supporting 209,000 
jobs in the southeastern U. S. alone (National Deer Association, 2022). 
Ecologically, hunting helps regulate deer populations, mitigating 
overbrowsing that disrupts understory vegetation (Marquis and 
Brenneman, 1981; Warren, 1991). WTD, the most commonly farmed 
cervid, also provide environmental benefits by thriving on brushlands 
unsuitable for cattle or horses (Lantz, 1908).

Cervid farming, which is currently expanding in Florida, is 
situated in a state where AMR bacteria are prevalent in hospitals, 
livestock, companion animals, and wildlife (Sy-Trias, 2023; Gutierrez 
et al., 2020; Giguère et al., 2010; White and Forrester, 1979; Greig et al., 
2007). However, antimicrobial use in farmed WTD, coupled with 

proximity to urban and agricultural areas, may drive AMR 
development. While the implications for Florida’s cervid farming 
remain unclear, AMR-associated morbidity and mortality could pose 
risks for WTD farmers. Assessing resistance patterns is crucial for 
managing cervid health and preserving ecosystem integrity.

However, the AMR in Florida farmed WTD is unknown. To date, 
AMR research in cervids has primarily focused on antimicrobial 
susceptibility of indicator bacteria such as Escherichia coli and 
Enterococcus spp., as well as pathogens like Campylobacter spp. and 
Salmonella spp. (Dias et al., 2015; Plaza-Rodríguez et al., 2021; Turchi 
et  al., 2019). High-throughput metagenomic sequencing enables 
comprehensive ARG profiling, yet studies on ARGs in cervids remain 
scarce (Rogers et al., 2018). Hence, this study aims to characterize the 
genotypic and phenotypic profiles of ARGs in E. coli isolates from 
these cervid populations using high-throughput sequencing, ARG 
annotation through publicly available databases, and antimicrobial 
susceptibility testing.

E. coli is widely recognized as a valuable indicator of AMR in 
wildlife and environmental monitoring (Anjum et al., 2021). Studies 
have demonstrated a significant correlation between the presence of 
AMR in E. coli and the detection of resistant pathogenic strains within 
the same sample (Nyirabahizi et  al., 2020). Due to its role as an 
indicator organism, strain-specific pathogenicity, and ease of culture 
(Anjum et  al., 2021), E. coli was selected in this study for AMR 
characterization from farmed WTD in Florida. In addition, to address 
the limitations of metagenomic approaches—namely sensitivity 
constraints, limited sequencing depth, and host DNA contamination—
this study employs WGS of E. coli.

2 Materials and methods

2.1 Sample collection and initial processing

A total of 60 tissue samples—including kidney, lung, liver, and 
heart—were collected during necropsies of 51 individual WTD. Of 
these, 33 samples were obtained from 30 clinically ill deer, which were 
either euthanized (2/30) or found dead (28/30). The 2 animals were 
euthanized by the farm owner due to bacterial pneumonia. When 
clinical signs such as lameness or upper respiratory illness are observed, 
owners may choose to initiate treatment, typically with antibiotics or 
supportive care, or proceed with euthanasia. Because deer, as prey 
animals, often mask signs of illness until advanced stages, treatment 
outcomes are frequently limited. Some owners attempt treatment until 
the animal is no longer viable, whereas others elect euthanasia earlier 
to reduce suffering. Consequently, there is no standardized threshold 
for this decision, and practices vary on a case-by-case basis. The 
remaining 27 samples were collected from deer that were found dead 
without prior clinical signs and necropsied within 24 h of death. These 
samples were gathered from 16 counties in Florida, U. S., between 
September 16, 2020, and November 14, 2022. The organs were grossly 
examined, and tissue was collected and placed in 5 mL sterile Eppendorf 
snap cap tubes (Thermo Fisher Scientific) in a cooler with ice packs 
while in the field and subsequently transferred to a 4 °C refrigerator. 
The WTD tissue samples were submitted to the Clinical Microbiology 
Laboratory at the University of Florida (UF) College of Veterinary 
Medicine (CVM) for aerobic or anaerobic bacterial culture, depending 
on the sample type and diagnostic suspicion. CNA agar (Columbia 
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Nalidixic Acid) is a selective medium designed for the isolation of 
Gram-positive bacteria. Since E. coli is a Gram-negative organism and 
the primary target of this study, no growth was expected or observed 
on CNA agar. The choice between aerobic and anaerobic culture 
conditions was guided by both sample type and the clinical or 
diagnostic context. For example, lung tissues were generally cultured 
under aerobic conditions due to their natural exposure to oxygen, 
whereas pus or lesion specimens were more often cultured anaerobically, 
reflecting their origin in enclosed or oxygen-limited environments. In 
addition, the suspected characteristics of the pathogen influenced this 
decision. Importantly, as a facultative anaerobe, E. coli was successfully 
isolated under both aerobic and anaerobic conditions. This work was 
approved by the UF Institutional Animal Care and Use Committee 
(IACUC Protocol Numbers 201609390 and 201909390).

2.2 Bacterial isolation and identification

Tissue samples were cultured specimens were cultured in their 
native form, directly incubated on differential media, including 
MacConkey agar (MAC), Columbia Nalidixic Acid agar (CNA), 
chocolate agar (CHOC), and general blood agar plates for bacterial 
isolation. No growth was observed on CNA agar. MALDI-TOF 
(MALDI Biotyper sirius one System from Bruker) was used for the 
identification of bacteria from the MAC, CHOC, and blood agar 
plates. Single colonies were then picked from E. coli positive plates and 
placed into CryoSavers tubes consisting of Brucella broth and 10% 
glycerol (Hardy Diagnostics) utilizing disposable inoculation wands 
(Thermo Fisher Scientific). The CryoSavers tubes were then stored in 
a −80 °C freezer until they were reinoculated into brain heart infusion 
(BHI) (DB Difco 237500) broth at 37 °C with shaking overnight at 220 
revolutions per minute (RPM) for WGS and antimicrobial 
susceptibility testing (AST).

2.3 DNA extraction and whole genome 
sequencing

One milliliter of the overnight culture was pelleted at 10,000× 
relative centrifugal force (RCF) for one minute. Then, the genomic 
DNA of the E. coli was extracted using the Wizard Genomic DNA 
Purification Kit (Promega #A1120), according to the manufacturer’s 
protocol. The sequencing libraries were prepared using the Illumina 
ILMN DNA LP Kit (#20060059) and IDT for Illumina DNA/RNA UD 
Indexes Set A (#20027213). The DNA libraries were then sequenced 
at the UF Interdisciplinary Center for Biotechnology Research (ICBR) 
NextGen DNA Sequencing core (RRID: SCR_019152) using an 
Illumina NovaSeq sequencer with 2 × 150 cycle S4 kit (Bruinsma 
et  al., 2018). The E. coli isolates were categorized into distinct 
phylogroups using the EZclermont web-based tool, allowing for a 
clear illustration of the collection’s diversity (Waters et al., 2020).

2.4 Data management and resistance gene 
analyses

To characterize the resistome of the E. coli isolates, the AMR++ 
Pipeline (version 3.0) (Bonin et al., 2023) was utilized. The AMR++ 

Pipeline trims the raw paired-end reads (FASTQ) for quality control 
and then aligns them to approximately 9,000 hand-curated ARGs 
from the MEGARes database 3.0 (https://www.meglab.org) using 
Burrows-Wheeler-Aligner (BWA) to produce Sequence Alignment/
Map (SAM) format (Lakin et  al., 2017). The Single Nucleotide 
Polymorphism (SNP) confirmation and “deduped” functions of the 
pipeline were implemented to confirm SNPs and deduplicate counts. 
Sequences from public databases that have been published and 
represent distinct accession numbers were referred to as individual 
ARGs. The main function of the structural genes in the MEGARes 
database is regulatory activity (e.g., efflux system), even though they 
are typically encoded on the chromosome and do not dictate 
phenotypic resistance. Three levels of hierarchical classification were 
established by aggregating ARGs: class (e.g., phenicols), mechanism 
(e.g., Phenicol resistance MFS efflux pumps), and group (e.g., floR) 
(Lakin et al., 2017). In addition to maintaining reasonable biological 
categories throughout the database, the group annotation provides 
insights into the primary gene classification while preserving 
nucleotide arrangements. Only ARGs that were more than 80 percent 
covered by sample reads and for which a single nucleotide 
polymorphism (SNP) did not confer resistance were taken into 
consideration for further examination.

ResistoXplorer (https://www.resistoxplorer.no) was implemented 
for data normalization, analysis, and visualization (Dhariwal et al., 
2021). The low-count and variance filters of the web-based tool were 
used to filter poor quality or non-informative ARGs to improve 
downstream comparative analyses. The low count filters were adjusted 
so that the software only included features present in at least one count 
and were prevalent in at least 10% of samples. The low variance filter 
was modified so that zero percentage variance was removed, and the 
calculation was based on the standard deviation. The Cumulative Sum 
Scaling (CSS) (Paulson et al., 2013) function was applied to remove 
any possible sampling or sequencing biases and to normalize the ARG 
counts before converting for relative abundance and core resistome 
analyses. CSS is similar to total sum scaling (TSS), which calculates 
the ratio of the read count for each ARG compared to the total read 
count per sample. However, to reduce the impact of highly abundant 
variable genes, the denominator is calculated by summing the total 
read counts, starting with low-abundance genes and continuing up to 
a predefined threshold. In a comparative analysis of nine normalization 
techniques for count data, CSS emerged as one of the most effective 
methods for handling large metagenomic datasets (Pereira et  al., 
2018). The relative abundance and core resistome matrices for 
different levels (e.g., class and mechanism) were then produced after 
CSS counts were aggregated for varying resistance levels (e.g., class 
and mechanism). These matrices were used to generate the plots in 
RStudio (R version 4.0.3), which illustrate the class and mechanism 
level relative abundance as well as the core resistome for all 
E. coli isolates.

2.5 Statistical analysis: genotype

Alpha diversity of the resistome was assessed using the Shannon 
diversity index, which accounts for both richness and evenness but 
does not capture compositional differences and is not normally 
distributed. Shannon indices were calculated for each sample across 
resistance profiles classified at the class, mechanism, group, and gene 
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levels. To evaluate the influence of metadata variables—including 
phylogroup, isolate origin, and farm—on resistome diversity, analysis 
of variance (ANOVA) was applied, acknowledging its assumptions of 
normality and homoscedasticity. This approach facilitated the 
identification of potential associations between environmental or 
biological factors and the complexity of antimicrobial 
resistance patterns.

2.6 Antimicrobial susceptibility testing

Antimicrobial susceptibility testing of the E. coli isolates was 
conducted using the Kirby-Bauer disk diffusion method on Mueller-
Hinton agar, based on the guidelines and recommendations in the 
CLSI VET01S (CLSI, 2024). Thirteen antimicrobials were selected for 
testing based on their frequent use in Florida deer farms and their 
relevance in both human and veterinary medicine. These include: 
ampicillin (AMP, 10 μg) (Becton Dickinson and Company, Sparks, 
MD, United States), penicillin (PEN, 10 μg) (Becton Dickinson and 
Company, Sparks, MD, United States), ceftiofur (CEFT, 30 μg) (Becton 
Dickinson and Company, Sparks, MD, United States), tetracycline 
(TET, 30 μg) (Becton Dickinson and Company, Sparks, MD, 
United States), oxytetracycline (OXY, 30 μg) (Becton Dickinson and 
Company, Sparks, MD, United States), gentamicin (GENT, 10 μg) 
(Becton Dickinson and Company, Sparks, MD, United  States), 
neomycin (NEOM, 30 μg) (Becton Dickinson and Company, Sparks, 
MD, United  States), NUFLOR® (florfenicol, FLU, 300 mg ml−1) 
(Merck & Co., Inc., Rahway, NJ, United  States), Resflor Gold® 
(florfenicol + flunixin meglumine, FF, 300/16.5 mg ml−1) (Merck & 
Co., Inc., Rahway, NJ, United States), trimethoprim-sulfamethoxazole 
(SXT, 1.25/23.7 μg) (Becton Dickinson and Company, Sparks, MD, 
United States), enrofloxacin (ENRO, 5 μg) (Becton Dickinson and 
Company, Sparks, MD, United  States), Draxxin® (tulathromycin, 
TUL, 100 mg ml−1) (Zoetis Inc. Kalamazoo, MI, United States), and 
ZACTRAN® (gamithromycin, GAM, 150 mg ml−1) (Boehringer 
Ingelheim Animal Health United  States Inc., Duluth, GA, 
United States). Fifteen microliters of the commercial antimicrobials—
NUFLOR®, Resflor Gold®, Draxxin®, ZACTRAN®—were applied to 
blank disks and left overnight covered in petri dishes while in a 
biosafety cabinet. The final antimicrobial amounts per disk were 
4.5 μg, 4.5/0.425 μg, 1.5 μg, and 2.25 μg, respectively. Susceptibility 
results were interpreted using zone of inhibition breakpoints 
established by the CLSI for AMP, CEFT, TET, OXY, GENT, and SXT, 
and by the NCCLS for NEOM. Multi-drug resistance was defined as 
resistance to at least three antimicrobial agents as described by Begum 
et al. (2018).

The isolates stored in CryoSavers tubes, consisting of Brucella 
broth and 10% glycerol (Hardy Diagnostics), at −80 °C were 
reinoculated into brain heart infusion (BHI) (BD Difco 237500; 
Becton, Dickinson and Company) broth at 37 °C with shaking 
overnight at 220 revolutions per minute (RPM). The culture was 
adjusted to an optical density (OD) of 0.1 (approximately 0.5 
McFarland standards) in BHI. Sterile swabs were dipped into the 
adjusted bacterial culture and gently rolled on the inside wall of 
the tube to squeeze out any excess culture. The entire surface of 
the Mueller-Hinton agar plate was swabbed in three directions, 
with the plate being rotated 60° after each pass to ensure even 
distribution and create a uniform bacterial lawn. The plates were 

then allowed to dry for no more than 15  min. A Sensi-Disc 
Dispenser (BD 260660; Becton, Dickinson and Company) was 
used to place 8 disks, while the remaining 5 were applied manually 
using sterile forceps. A minimum distance of 24 mm between the 
centers of adjacent disks and 15 mm from the edge of the plate was 
maintained. Each disk was gently pressed to ensure firm contact 
with the agar surface. The plates were inverted and incubated at 
37 °C for 16–18 h under aerobic or anaerobic conditions. 
Following incubation, the diameter of the clear zone around each 
antimicrobial disk was measured in millimeters. To account for 
potential irregularities in the shape of the zone of inhibition 
(ZOI), measurements were taken at three different points along 
the edge and then averaged. The CLSI and NCCLS breakpoints 
were applied to classify each isolate as resistant, intermediate, 
or susceptible.

2.7 Statistical analysis: phenotype

A generalized linear model (GLM) with a Poisson distribution 
and log link function was used to assess the effects of phylogroup, 
isolate, and farm on phenotypic resistance counts. The GLM was 
constructed using phenotypic resistance counts as the dependent 
variable and the tested factors—phylogroup, isolate, and farm—as 
independent variables. This approach allowed for the assessment 
of potential associations between these factors and the observed 
resistance phenotypes while accounting for variability within the 
data. Statistical significance was determined by calculating 
p-values for each factor, with a threshold of 0.05 
indicating significance.

2.8 Correlation among antimicrobial 
resistant genotypes and phenotypes

The resistant genotype of the E. coli isolates was identified through 
whole genome sequencing, and the use of the AMR++ pipeline to 
align the sequencing reads to a curated ARG database. A 
comprehensive workflow for genotype and phenotype determination 
of the E. coli isolates is outlined in the above sections. Cohen’s kappa 
statistics were used to assess the agreement between genotype and 
phenotype. The presence of the cmy, ctx, or tem gene groups was 
classified as a resistant genotype for AMP and CEFT, while the tetA, 
tetB, or tetD gene groups were considered a resistant genotype for TET 
and OXY. For GENT and NEOM, a resistant genotype was determined 
by the existence of the aac3 gene group, and for FLU, the floR or cmlA, 
gene groups. A resistant genotype to ENRO was linked to the qnrS 
gene group. Due to the complex interaction of SXT, which inhibits two 
pathways in folate synthesis, the simultaneous presence of the sulII, 
sulIII, and dfrA gene groups was considered a resistant genotype 
(Projan, 2002). The ZOI breakpoints for Enterobacterales, as outlined 
by CLSI and NCCLS, were used to classify phenotypic resistance. For 
statistical purposes, isolates in the intermediate category were treated 
as susceptible (Schwan et al., 2021). Kappa coefficient (κ) values were 
interpreted as follows: <0.2 = poor, 0.21–0.4 = fair, 0.41–0.6 = 
moderate, 0.61–0.8 = good, and 0.81–1.0 = very good agreement 
(Azen and Walker, 2021). A two-sided z-test with a p-value < 0.05 was 
considered statistically significant.
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3 Results

3.1 Animal information and phylogroup

The 60 E. coli strains were collected from tissue samples obtained 
during the necropsy of 51 individual WTD. The bacteria were initially 
isolated, and identified using MALDI-TOF, followed by DNA 
extraction and whole genome sequencing. Following sequencing, the 
E. coli isolates were typed by phylogroup to assess their diversity, 
employing methods described by Metrailer et al. (2024). The isolates 
were grouped into seven distinct phylotypes: A, B1, B2, C, D, E, and 
F (Table 1). Of the 60 isolates, 75% (45/60) grouped into phylogroup 
B1, while 11.67% (7/60), 0.05% (3/60), 0.03% (2/60), 0.01% (1/60), 
0.01% (1/60), 0.01% (1/60), grouped into phylogroups A, D, E, B2, C, 
and F, respectively.

3.2 Core resistome and abundance profiles

The core resistome refers to the set of ARGs, gene groups, 
mechanisms, or classes that are consistently detected in a large 
proportion of a population, exceeding a defined abundance threshold. 
In E. coli isolates from farmed WTD in Florida, the core resistome 
comprises ARGs associated with five major antimicrobial classes: 
β-lactams, multidrug resistance (MDR), bacitracin, macrolide-
lincosamide-streptogramin (MLS), and cationic antimicrobial 
peptides (CAP). These ARGs are both abundant and broadly 
distributed across the sampled population (Figure 2). The heat map 
of the core resistome illustrates five classes to be prevalent in at least 
10% of the samples. For example, the prevalence of the bacitracin 
class having a relative abundance (or detection threshold) of 0.001%, 
is 90%. As the detection threshold becomes more stringent, with a 
relative abundance of at least 0.100%, the prevalence drops to 
approximately 0.20 (only 20% of samples will contain bacitracin 
resistance at a relative abundance of 0.100%).

Among the 60 E. coli samples analyzed, 362 unique ARGs were 
identified as resistant to 12 antimicrobial classes. Overall, the ARGs 
identified confer resistance to the ß-lactam (49.06%), MDR (14.82%), 
CAP (8.1%), bacitracin (8.1%), MLS (6.02%), aminoglycoside 
(4.55%), tetracycline (3.76%), phenicol (3.17%), sulfonamide 
(2.12%), trimethoprim (0.2%), fluoroquinolone (0.06%), and 
fosfomycin (0.03%) antimicrobial class (Figure 3A). ß-lactam and 
MLS resistance were abundant in every sample tested, and MDR was 
abundant in 90% (54/60) of the samples tested (Figure 3B).

The 12 antimicrobial classes confer resistance by 19 mechanisms, 
including Penicillin binding protein (28.1%), Multi-drug RND efflux 
regulator (14.82%), Undecaprenyl pyrophosphate phosphatase 
(8.1%), Lipid A modification (8.1%), Class C β-lactamases (7.49%), 
Mutant porin proteins (7.1%), Class A β-lactamases (6.38%), 
Macrolide phosphotransferases (5.51%), Aminoglycoside 
O-phosphotransferases (3.82%), Tetracycline resistance MFS efflux 
pumps (3.76%), Phenicol resistance MFS efflux pumps (3.17%), and 
Sulfonamide- resistant dihydropteroate synthase (2.12%). The 
remaining seven mechanisms had an overall abundance of less than 
1 % and are summarized in Figure 4A. Penicillin binding protein was 
abundant in every sample tested and mechanisms associated with 
MLS resistance and MDR were observed in 98.3% (59/60) and 90% 
(54/60) of samples, respectively (Figure 4B).

In addition to the class and mechanism abundance profiles, 
various level 1 high-risk AMR genes were discovered in relatively 
high abundances in the current study (Figure 5). A total of five 
ARG groups that are considered “present hazards” (Zhang et al., 
2021) including aac3, aph6, floR, mphA, and mphB were found in 
the E. coli isolated from the WTD samples. ARG groups: aac3, 
aph6, floR, mphA also contain genes in multiple categories (e.g., 
Level 3, Level 4, and unassigned). Among the rank 1 ARGs, mphB 
was identified in over 98% (59/60) of the samples tested. Notably, 
samples S11 and S30 exhibited the highest relative abundances, 
with mphB representing 13.8% (551/527233) and 11.5% 
(229/52733) of the total reads, respectively. Additionally, floR, 
which is known to confer resistance to chloramphenicol and 
florfenicol (White et al., 2000), showed a relative abundance of 
16.3% (4,122/32,389), the highest percentage among all samples 
and ARG groups.

Alpha diversity analyses were conducted using analysis of 
variance (ANOVA) with the Shannon diversity index to assess 
whether any metadata factors influenced resistance profile levels. 
Prior to conducting the ANOVA, assumptions of normality and 
homogeneity of variance were verified. No statistically significant 
differences were observed between the levels of resistance profiles 
(class, mechanism, group, and gene) across the experimental factors 
(region, farm, and phylogroup) (p-value > 0.05).

3.3 Antimicrobial susceptibility testing

The Kirby-Bauer disk diffusion method was conducted on 60 
E. coli isolates from farmed WTD in Florida. The ZOI for each 
antimicrobial agent varied between aerobic and anaerobic conditions. 
Under aerobic conditions, the following resistance rates were 
observed: 14.75% of the isolates were resistant to AMP (Ampicillin); 
8.20% to CEFT (Ceftiofur); 6.56% to ENRO (Enrofloxacin); 14.75% 
to FLU (Florfenicol); 4.92% to GENT (Gentamicin); 1.64% to NEO 
(Neomycin); 29.51% to OXY (Oxytetracycline); 26.23% to TET 
(Tetracycline); and 1.64% to SXT (Trimethoprim–sulfamethoxazole). 
Additionally, intermediate resistance was detected in 1.64, 4.92, 3.28, 
and 3.28% of isolates for CEFT, ENRO, FLU, and TET, respectively 
(Figure 6A). Under anaerobic conditions, the following resistance 
rates were observed: 11.48% of the isolates were resistant to AMP 
(Ampicillin); 8.20% to CEFT (Ceftiofur); 6.56% to ENRO 
(Enrofloxacin); 11.48% to FLU (Florfenicol); 32.79% to GENT 
(Gentamicin); 39.34% to NEO (Neomycin); 29.51% to OXY 
(Oxytetracycline); 8.20% to TET (Tetracycline); and 3.28% to SXT 
(Trimethoprim–sulfamethoxazole). Additionally, intermediate 
resistance was detected in 4.92, 1.64, 4.92, 60.66, 57.38, 1.64, 1.64, 
21.31, and 6.56% of isolates for AMP, CEFT, ENRO, GENT, NEO, 
OXY, SXT, TET, and FLU, respectively (Figure  6B). The CLSI 
veterinary guidelines do not specify ZOI breakpoints for Florfenicol 
+ Flunixin meglumine (FF), Gamithromycin (GAM), Penicillin 
(PEN), and Tulathromycin (TUL) in the context of E. coli. 
Consequently, it is not possible to categorize these antimicrobials as 
resistant, intermediate, or susceptible. To aid in interpretation, 
Figure 7 presents a boxplot depicting the mean ZOI values for all 
tested drugs under both aerobic and anaerobic conditions. Based on 
clinical breakpoints for the order Enterobacterales, 30% (18/60) of 
the E. coli isolates displayed AMR to no less than one drug tested 
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TABLE 1  Typing information for animals and E. coli isolates collected from farmed WTD in Florida between September 2020 and November 2022 
(n = 60).

Sample Necropsy date County Phylotype Phenotype Genotype

S1 19-Sep-20 Gadsden A 0 5

S2 8-Oct-20 Lafayette B1 4 7

S3 8-Oct-20 Lafayette B1 4 6

S5 23-Oct-20 Calhoun B1 2 6

S6 23-Oct-20 Calhoun B1 2 6

S4 23-Oct-20 Calhoun B1 0 6

S7 2-Nov-20 Calhoun B1 2 9

S8 23-Nov-20 Liberty B1 0 5

S9 4-Dec-20 Liberty A 0 4

S10 28-Dec-20 Marion B1 0 4

S11 12-Jan-21 Marion A 0 3

S12 21-Jan-21 Calhoun B1 0 4

S13 21-Jan-21 Calhoun B1 0 4

S14 25-Jan-21 Okeechobee E 0 4

S15 29-Jan-21 Calhoun B1 0 5

S16 29-Jan-21 Calhoun B1 0 5

S17 19-Feb-21 Jefferson D 0 5

S18 19-Feb-21 Jefferson D 0 5

S19 22-Feb-21 Gadsden E 0 5

S20 13-Mar-21 Marion B1 0 4

S21 13-Mar-21 Marion B1 0 4

S22 13-Mar-21 Marion A 0 3

S35 28-Sep-21 Gadsden B1 2 8

S23 11-Jun-21 Marion B1 3 9

S24 11-Jun-21 Marion B1 3 9

S25 11-Jun-21 Marion B1 2 6

S26 14-Jul-21 Columbia B1 0 4

S28 29-Jul-21 Gadsden D 0 5

S27 29-Jul-21 Gadsden C 0 5

S29 27-Aug-21 Hillsborough B1 0 4

S30 28-Aug-21 Liberty B1 0 4

S31 30-Aug-21 Liberty A 0 4

S32 1-Sep-21 Nassau B1 0 11

S33 4-Sep-21 Nassau B1 0 5

S34 27-Sep-21 Marion B1 6 9

S37 29-Sep-21 Sumter B2 0 5

S36 29-Sep-21 Sumter B1 0 4

S38 8-Oct-21 Liberty A 0 5

S40 20-Oct-21 Liberty B1 0 4

S41 9-Nov-21 Gadsden B1 0 5

S42 23-Nov-21 Gadsden B1 2 6

S43 7-Mar-22 Gadsden B1 4 9

S44 21-Mar-22 Liberty F 2 5

(Continued)
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under aerobic conditions, while 68% (41/60) showed resistance under 
anaerobic conditions. In contrast, nine E. coli isolates (15%) exhibited 
an MDR phenotype under both aerobic and anaerobic conditions 
(Figures 8A,B).

Notably, all isolates exhibiting phenotypic resistance to at least one 
tested antimicrobial belonged to the B1 phylogroup. However, none 
of the tested factors—phylogroup, isolate, or farm—had a significant 
effect on phenotypic resistance counts (p-value > 0.05).

3.4 Comparison between antimicrobial 
susceptibility genotypes and phenotypes

To assess the potential of WGS in predicting AMR profiles, 
we  compared genotypic data (gene presence) with phenotypic 
resistance behaviors. Understanding the concordance between these 
two factors is essential for evaluating the accuracy of genetic 
predictions in reflecting observed resistance patterns. For instance, a 

TABLE 1  (Continued)

Sample Necropsy date County Phylotype Phenotype Genotype

S45 4-Apr-22 Jackson B1 0 5

S46 23-May-22 Calhoun B1 0 5

S47 22-Jul-22 Gadsden B1 0 5

S48 29-Jul-22 Hernando B1 0 4

S49 11-Aug-22 Martin B1 6 8

S50 7-Sep-22 Clay B1 2 6

S51 13-Sep-22 Hillsborough B1 0 7

S52 6-Oct-22 Gadsden B1 6 10

S53 7-Oct-22 Suwannee B1 6 9

S54 7-Oct-22 Suwannee B1 2 5

S55 10-Oct-22 Suwannee B1 0 5

S56 11-Oct-22 Jackson B1 0 5

S57 12-Oct-22 Suwannee B1 0 5

S58 14-Oct-22 Suwannee B1 0 5

S59 15-Oct-22 Suwannee B1 2 6

S60 18-Oct-22 Suwannee B1 0 5

S61 14-Nov-22 Jackson A 0 5

Genotype (number of antimicrobial classes each sample had at least one ARG for). Phenotype (number of drugs each sample was phenotypically resistant to). Phylotype (EzClermont).

FIGURE 2

Heatmap of core resistome analysis of E. coli isolates from white-tailed deer revealed five classes to be prevalent in at least 10% of the samples. 
Macrolide, lacosamide, Streptogramin (MLS).
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strong agreement (Kappa > 0.80) was observed between genotype-
based resistance (presence of tetA, tetB, or tetD genes) and phenotypic 
resistance (determined by a ZOI diameter ≤10 mm) for both 
tetracyclines tested (tetracycline and oxytetracycline). This finding is 
particularly important, as E. coli exhibiting high concordance 
between genotype and phenotype could be  utilized in AMR 
surveillance programs, where gene presence is strongly correlated 
with the resistant phenotype. However, the comparison between 

genotypic and phenotypic AMR profiles can be complex due to the 
varying resistance mechanisms across different antimicrobial agents 
and bacterial species. While the genotype represents the genetic 
“potential” for resistance, it does not always correspond fully to the 
phenotype expressed by the bacterium. The consonance between 
genotypic and phenotypic drug resistance was good for AMP 
(kappa = 0.762) and very good for GENT (kappa = 1), TET 
(kappa = 0.875), OXY (kappa = 0.96), and SXT (kappa = 1), as 

FIGURE 3

(A) Percentage of reads from E. coli isolates that confer resistance to each antimicrobial class. (B) Normalized relative abundance (percentage) of ARGs 
in E. coli isolates grouped by resistance class for all 60 samples. Multi drug resistance (MDR); Cationic antimicrobial peptides (CAP); Macrolide, 
lacosamide, Streptogramin (MLS).
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demonstrated in Table  2. In contrast, CEFT (kappa = 0), ENRO 
(kappa = −0.0274) displayed poor agreement, while FLU 

(kappa = 0.36) demonstrated fair agreement and NEO 
(kappa = 0.487) showed moderate agreement (Table 2).

FIGURE 4

(A) Percentage of reads from E. coli isolates for each mechanism of antimicrobial resistance. (B) Normalized relative abundance (percentage) of ARGs 
in E. coli isolates grouped by resistance mechanism for all 60 samples. N-acetylTFs (N-acetyltransferases); O-nucleotidylTFs 
(O-nucleotidyltransferases); O-phosphoTFs (O-Phosphotransferases); Transferases (TFs); rstnc (Resistance); ABC (ATP- binding cassette); RND 
(Resistance-Nodulation-Division); MFS (major facilitator superfamily); rst (resistant); DTPS (dihydropteroate synthase).
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4 Discussion

4.1 Resistome profiling and phylogroup 
distribution in Escherichia coli from Florida 
farmed WTD

In this study, whole genome sequencing of E. coli genomic 
DNA from various tissue samples of WTD was employed to 
quantify ARGs and report the relative abundance of the various 
genetic determinants attributed to AMR. A total of 362 distinct 
ARGs were identified, conferring resistance to 12 antimicrobial 
classes through 19 different mechanisms. These results exceed 
those of similar studies using different matrices, such as roe deer 
feces (41 ARGs from 7 antimicrobial classes) (Dias et al., 2022), 
soils treated with bovid and swine manure (77 ARGs from 8 
antimicrobial classes) (Chen et al., 2019), and porcine excrement 
(146 ARGs from 9 antimicrobial classes) (Zhao R. et al., 2018; Zhao 
Y. et al., 2018).

In our analysis of E. coli isolated from WTD tissue samples, 
we  identified a range of ARGs that align with documented 
antimicrobial resistance trends across wildlife and agricultural species. 
Two classes of the core resistome, MLS and MDR, are especially 
concerning as these classes are less specific and are responsible for 
conferring resistance to numerous antimicrobials or classes. Overall, 
ARGs associated with β-lactam resistance were highly abundant, 
along with those conferring MDR and resistance to individual classes 
like bacitracin, cationic antimicrobial peptides (CAP), macrolide-
lincosamide-streptogramin (MLS), aminoglycoside, and tetracycline. 
These antimicrobial classes mirror those commonly used in global 
livestock production systems (He et  al., 2020) as well as ice core 
samples without anthropogenic influence (Paun et al., 2021). Their 
widespread presence has also been documented in wildlife, 
particularly near anthropogenic sources such as manure and biosolid 

application sites. For example, tetracycline resistance genes (tetQ) 
were frequently detected in wild deer in such environments, 
highlighting the impact of human activity on wildlife resistomes 
(Rogers et al., 2018). Comparable ARG profiles have been observed in 
farmed sika deer in China, where tetracycline resistance genes were 
similarly predominant (Huang et  al., 2016), and in wildlife gut 
microbiota across species in Poland, where tetQ was the most 
prevalent ARG (Skarżyńska et al., 2020).

Our findings also corroborate above mentioned patterns, with 
mphB—an ARG conferring resistance to MLS—identified in over 98% 
(59/60) of the samples. The highest relative abundance of mphB was 
observed in samples S11 and S30, where it represented 13.8% 
(551/527,233) and 11.5% (229/52,733) of total reads, respectively. 
Additionally, floR, associated with chloramphenicol and florfenicol 
resistance (White et al., 2000), exhibited the highest relative abundance 
among all samples and ARG groups, reaching 16.3% (4,122/32,389). 
This prevalence echoes findings in cattle farming where, β-lactam, 
MLS, aminoglycoside, and tetracycline ARGs to be  dominant 
(Muurinen et al., 2017; Qian et al., 2018; Zhao R. et al., 2018; Zhao 
Y. et al., 2018; Chen et al., 2019; Wu et al., 2020). Recent studies have 
also reported a rising prevalence of β-lactam resistance, including 
cephalosporin- and carbapenem-resistant genotypes, highlighting the 
widespread dissemination of these ARGs in companion animals, dairy 
cattle, and wastewater (Daniels et al., 2018; Mollenkopf et al., 2018; 
Mathys et al., 2019). This trend is also consistent with a linear increase 
in β-lactam resistance, including cephalosporins, observed in E. coli 
from WTD in Ohio, United States (Ballash et al., 2021).

Beyond our specific findings, we identified ARGs such as sulII 
(sulfonamide resistance), qnrS (fluoroquinolone resistance), blaTEM 
(class A β-lactamase), and various aph genes (aminoglycoside 
O-phosphotransferases), which are recognized as environmental 
resistance markers (Berendonk et al., 2015). These findings reveal a 
complex ARG profile in farmed WTD from Florida, influenced by 

FIGURE 5

Heatmap representing the relative abundance (percentage) of high-risk ARG groups (Rank 1) detected in each sample. ARG groups mphA, floR, aph6, 
and aac3 contain genes that are classified in different risk levels and are denoted by an *.
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both environmental factors and human activities related to 
antimicrobial resistance. This study is the first to characterize the 
resistome of farmed WTD in Florida, identifying five high-risk 
antimicrobial resistance genes (ARGs) present at relatively high 
abundances. These ARGs are considered ‘present hazards’ due to their 
association with ESKAPE pathogens—Enterococcus faecium, 
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter 
baumannii, Pseudomonas aeruginosa, and Enterobacter species—
which pose a global threat to human health and their potential for 
horizontal gene transfer (HGT) (Zhang et al., 2021). These insights 

provide valuable guidance for managers, farm owners, and 
veterinarians, supporting informed decisions on medication use in 
Florida deer farms.

The distribution of E. coli phylogroups observed in this study 
aligns with prior research (Touchon et al., 2020; Munkhdelger et al., 
2017). The most prevalent phylogroups were B1, A, and D, while C, E, 
and F were the least common. Phylogroups A and B1, commonly 
linked to commensal strains, are generally less virulent but exhibit 
notable AMR in specific contexts, particularly in agricultural 
environments. These phylogroups often harbor ARGs for tetracyclines, 

FIGURE 6

(A) Bar chart illustrating the percentage of E. coli isolates from WTD classified as Susceptible, Intermediate, or Resistant to each antimicrobial 
compound, according to CLSI breakpoints under aerobic conditions. (B) Bar chart illustrating percentage of E. coli isolates from WTD classified as 
Susceptible, Intermediate, or Resistant to each antimicrobial compound, according to CLSI breakpoints under aerobic conditions. AMP (Ampicillin); 
CEFT (Ceftiofur); FLU (Florfenicol); NEO (Neomycin); GENT (Gentamicin); ENRO (Enrofloxacin); TET (Tetracycline); OXY (Oxytetracycline); SXT 
(Trimethoprim–sulfamethoxazole).
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sulfonamides, and aminoglycosides (Monroy-Pérez et al., 2020; Pais 
et  al., 2022). Although phylogroup A showed an overall lack of 
resistance, ARGs for tetracyclines, sulfonamides, and aminoglycosides 
were detected in phylogroup B1. In our study, phylogroup B1 is 
predominant and demonstrates high resistance to tetracyclines, 
β-lactams, and sulfonamides and MDR, which is lower than in clinical 
isolates (Pais et al., 2022). While the prevalence of MDR and ESBL 
genes were lower than in clinical isolates, their presence still poses a 
significant risk of zoonotic transmission (Pais et al., 2022).

Interestingly, although phylogroup D was the third most prevalent 
group in this study, it accounted for only 0.05% (3/60) of total 
isolates—a markedly lower proportion than the 26 and 28.4% reported 
in previous studies in humans, domestic and wild animals and the 
environment (Touchon et  al., 2020; Munkhdelger et  al., 2017). 
Phylogroup D is generally considered more virulent than phylogroups 
A and B1, typically associated with extraintestinal pathogenic E. coli 
(ExPEC) in humans rather than with commensal strains (Clermont 
et al., 2000; Da Silva and Mendonça, 2012; Picard et al., 1999).

A notable finding in the present study was that only one isolate 
(S36) belonged to phylogroup B2, a strikingly low proportion 
compared to the 39 and 33.8% reported by Touchon et al. (2020) and 
Munkhdelger et al. (2017), respectively. This discrepancy is surprising 
given the dominance of phylogroup B2 in isolates from Asia (Zhao 
et al., 2015; Lee et al., 2016; Bashir et al., 2012), Europe (Ejrnæs et al., 
2011; Dubois et  al., 2010), Africa (Dadi et  al., 2020), and North 
America (Paniagua-Contreras et al., 2017). In these studies, B2 isolates 
frequently harbored ESBL genes and MDR profiles, particularly 

against cephalosporins and fluoroquinolones (Monroy-Pérez et al., 
2020; Hemati et al., 2024). In contrast, no resistance determinants 
were identified in the phylogroup B2 isolate from our study. These 
differences highlight the variability in phylogroup distribution across 
geographic regions and underscore the need for further investigation 
to understand the factors driving these patterns.

4.2 AMR profiles of Escherichia coli isolated 
from farmed WTD in Florida

The bacterial AMR profile of various vertebrate species and the 
environment is still primarily assessed through culture-dependent 
methods (Guitor et al., 2019). In this study, we assessed the prevalence 
of AMR by evaluating the susceptibility of E. coli isolated from 
farmed WTD in Florida to 14 commonly used farm-associated 
antimicrobials. Based on clinical breakpoints for the family 
Enterobacteriaceae, 30% (18/60) of the E. coli isolates displayed 
resistance under aerobic conditions, while 68% (41/60) showed 
resistance under anaerobic conditions. These values exceed the 
resistance rates reported in venison from Germany (9%) and red deer 
in Spain (7, 23%) (Mateus-Vargas et al., 2017; Alonso et al., 2016; 
Dias et al., 2022). In the U. S., 16.7% of E. coli isolates obtained from 
bison (Bison bison) carcasses exhibited resistance to at least one 
antimicrobial agent (Li et al., 2007).

In our study, E. coli isolates predominantly exhibited phenotypic 
resistance to tetracyclines under aerobic conditions. A high 

FIGURE 7

Boxplots and individual points representing the mean zone of inhibition (in millimeters) for E. coli isolates from WTD, grouped by antimicrobial agent 
under aerobic and anaerobic conditions. AMP (Ampicillin); CEFT (Ceftiofur); FLU (Florfenicol); NEO (Neomycin); GENT (Gentamicin); ENRO 
(Enrofloxacin); TET (Tetracycline); OXY (Oxytetracycline); SXT (Trimethoprim–sulfamethoxazole); FF (Florfenicol + Flunixin meglumine); GAM 
(Gamithromycin); PEN (Penicillin); TUL (Tulathromycin). “an” indicates anaerobic condition.
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proportion of isolates also demonstrated phenotypic resistance to 
penicillin when interpreted using ZOI breakpoints reported in 
previous studies (Bughe et al., 2020). However, as the CLSI does not 
provide breakpoints for penicillin in E. coli, we excluded penicillin 
from formal phenotypic categorization. This observation is 
consistent with the findings of wild roe deer (Mayrhofer et al., 2006) 
and farmed red deer (Alonso et al., 2016), but contrasts with those 
of wild red deer (Dias et al., 2022) and wild WTD (Ballash et al., 

2021), where resistance to ß-lactams and sulfonamides was most 
prevalent. The tetA and tetB gene groups, responsible for encoding 
an active efflux pump, were present in all isolates with phenotypic 
resistance to tetracyclines, indicating these gene groups play a key 
role in tetracycline resistance observed in our study. Under 
anaerobic conditions, aminoglycosides, specifically GENT and 
NEO, demonstrated the highest resistance rates, with 32.8 and 
39.3%, respectively. This is expected, as aminoglycosides require 

FIGURE 8

(A) Heatmap illustrating the total number and specific drug(s) to which each sample displayed phenotypic resistance under aerobic conditions. 
(B) Heatmap illustrating the total number and specific drug(s) to which each sample displayed phenotypic resistance under anaerobic conditions. AMP 
(Ampicillin); CEFT (Ceftiofur); FLU (Florfenicol); NEO (Neomycin); GENT (Gentamicin); ENRO (Enrofloxacin); TET (Tetracycline); OXY (Oxytetracycline); 
SXT (Trimethoprim–sulfamethoxazole).
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oxygen to cross the cell membrane (Whelton, 1984), and the 
accumulation of reactive metabolic byproducts has been noted in 
cells treated with these antibiotics (Wong et al., 2022). Penicillin was 
included in the AST, despite the lack of ZOI breakpoints for the 
medication in the CLSI VET01S. It is important to note that if the 
ZOI breakpoints from previous studies were applied for resistant, 
intermediate, or susceptible categorization, 95% (57/60) of isolates 
would have been resistant to penicillin under aerobic conditions 
(Bughe et al., 2020).

In the present study, isolates exhibiting phenotypic resistance to 
three or more antimicrobials were considered MDR, following the 
criteria by Begum et al. (2018). Under aerobic conditions, nine E. coli 
isolates (15%) exhibited a MDR phenotype, a significantly higher 
proportion compared to farmed red deer (1/72, 1.3%) (Alonso et al., 
2016), wild red deer (2/101, 1.9%) (Dias et al., 2022), and wild roe deer 
(1/76, 1.3%) (Mayrhofer et  al., 2006). Similarly, under anaerobic 
conditions, nine E. coli isolates (15%) also exhibited a MDR phenotype. 
The high prevalence of multidrug-resistant (MDR) strains may 
be attributed to the indiscriminate use of antimicrobial agents (Van 
Den Bogaard and Stobberingh, 2000). Nevertheless, the MDR patterns 
identified in this study offer valuable insights for farm managers, 
owners, and veterinarians in selecting appropriate treatments for use 
in deer farms—for instance, by choosing antimicrobials that retain 
efficacy and avoiding those associated with high resistance rates.

Our findings underscore the advantages of utilizing both culture-
dependent and culture-independent methods to investigate drug 
resistant bacteria, as they complement each other. For example, 
ß-lactam resistance-associated ARGs were the most abundant across 
all samples, yet only seven of the isolates showed phenotypic 
resistance to two antimicrobials commonly used on deer farms: 
CEFT and AMP. Moreover, the presence of gene groups: cmy, ctx, or 
tem could serve as a proxy for phenotypic resistance for AMP, which 
exhibited good agreement (kappa = 0.762), but not for CEFT 
(kappa = 0). However, the presence of ARGS in our analysis was in 
good agreement with an intermediate phenotype for CEFT. In 
addition, tetA, tetB, or tetD gene groups showed very good agreement 
with the phenotypic resistance in isolates from farmed WTD in 
Florida. These findings are encouraging, especially as tetracyclines 
are among the most widely used antimicrobial classes in veterinary 

(Daghrir and Drogui, 2013) and agricultural production (Chang 
et al., 2023). Despite the challenges in drawing direct comparisons, 
both approaches need globally standardized methodologies. Software 
like the AMR++ pipeline, coupled with the ResistoXplorer platform, 
performed exceptionally well in standardizing metagenomics-based 
results, despite the diversity of upstream approaches.

The results of this study showed that none of the evaluated 
factors—phylogroup, isolate, or farm—significantly affected 
phenotypic resistance counts (p > 0.05). Thus, no associations were 
detected between resistance phenotypes and either genetic 
background or environmental origin within the dataset. Nevertheless, 
the observation that phenotypic resistance occurred exclusively in 
phylogroup B1 suggests an intriguing trend that merits 
further investigation.

While our study provides valuable information on resistance 
profiles from Florida’s farmed WTD, it is important to consider the 
limitations of our study design. The overrepresentation of 
phylogroups A and B1  in the dataset may have introduced bias, 
potentially underestimating the role of other phylogroups, such as 
B2 and D, which are known to frequently harbor multidrug-resistant 
strains (Hemati et al., 2024; Tohmaz et al., 2022). Phylogroup B1, 
commonly associated with commensal strains, has also been linked 
to resistance determinants, especially in agricultural and 
environmental settings. The diverse resistance profiles observed 
within this phylogroup highlight its adaptability to selective 
pressures, such as the use of antibiotics in livestock (Hemati et al., 
2024; Raimondi et al., 2019). The absence of significant associations 
might also be  explained by a limited sample size or insufficient 
diversity in metadata factors. Future studies with a more balanced 
representation of phylogroups and broader environmental and 
clinical contexts may uncover nuanced relationships between genetic 
background and resistance patterns. This underscores the 
importance of expanding datasets to capture a more comprehensive 
view of how resistance determinants are distributed across 
E. coli populations.

This study has several limitations. First, the samples were 
obtained from necropsied farmed WTD, which may not fully 
represent the broader farmed or wild deer populations across 
Florida. The use of E. coli as an indicator organism, while 

TABLE 2  Contingency table comparing genotypic resistance to phenotype resistance.

Antimicrobial Susceptible phenotype Resistant phenotype Kappa 
coefficient

Agreement p-value

Resistant 
genotype

Susceptible 
genotype

Resistant 
genotype

Susceptible 
genotype

AMP 4 48 8 0 0.762 Good 1.23e-09

CEFT 12 48 0 0 0 Poor –

FLU 6 52 2 0 0.366 Fair 2.45e-04

NEO 2 57 1 0 0.487 Moderate 1.1e-05

GENT 0 57 3 0 1 Very good 9.55e-15

ENRO 1 55 0 4 −0.0274 Poor 0.788

TET 3 42 15 0 0.875 Very good 8.41e-12

OXY 1 42 17 0 0.96 Very good 1.01e-13

SXT 0 59 1 0 1 Very good 9.55e-15

AMP, Ampicillin; CEFT, Ceftiofur; FLU, Florfenicol; NEO, Neomycin; GENT, Gentamicin; ENRO, Enrofloxacin; TET, Tetracycline; OXY, Oxytetracycline; SXT, Trimethoprim–
sulfamethoxazole.
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informative, captures only the culturable fraction of the microbial 
community and may overlook additional ARGs present in 
unculturable taxa. Although whole-genome sequencing provided 
valuable genotypic insights, it has limited ability to resolve mobile 
genetic elements such as plasmids and transposons, which are 
central to AMR dissemination. Furthermore, discrepancies 
between genotypic predictions and phenotypic resistance 
highlight the need for functional validation beyond genomic data. 
Finally, the cross-sectional design and lack of detailed 
antimicrobial usage records restricted our ability to assess 
temporal dynamics or directly link farm management practices 
with resistance outcomes.

5 Conclusion and future directions

The detection of ARGs in E. coli isolated from farmed WTD in 
Florida underscores the presence of resistance to multiple 
antimicrobial classes. In total, 362 unique ARGs were identified, 
conferring resistance to 12 antimicrobial classes through 19 distinct 
mechanisms. Among the E. coli isolates, 30% (18/60) exhibited 
resistance to at least one antimicrobial agent under aerobic 
conditions, while 15% (9/60) demonstrated a MDR phenotype. 
Notably, five high-risk ARG groups—aac3, aph6, floR, mphA, and 
mphB—were found in high abundance, with mphB and floR 
particularly prevalent, comprising up to 13.8 and 16.3% of total ARG 
reads, respectively.

These findings highlight an urgent need for targeted management 
practices to limit disease transmission and mitigate the development 
and spread of antimicrobial resistance. Certain ARGs may serve as 
effective bioindicators for environmental health monitoring, resistance 
quantification, strategy evaluation, and predictive modeling of ARG 
distribution (Ishii, 2020). To address these risks, robust 
compartmentalization practices—including the implementation of 
barrier fencing—are critical for preventing direct and indirect 
transmission of ARGs between farmed WTD and surrounding free-
ranging populations.

The high prevalence of resistance genes—particularly those 
associated with β-lactam antibiotics (49%) and MDR phenotypes 
(14.8%)—emphasizes the potential for horizontal gene transfer 
between wildlife and livestock. Routine surveillance of ARGs and 
pathogenic organisms in farmed WTD is essential to guide 
antimicrobial stewardship and anticipate emerging resistance 
trends. Monitoring key indicator genes such as sulI, sulII, aadA, 
bacA, oqxA, ermB, and mexE may provide early warnings of ARG 
proliferation (Zhao R. et al., 2018; Zhao Y. et al., 2018; Tarek and 
Garner, 2023).

Tracking the progression of resistance, particularly to drugs like 
ceftiofur and enrofloxacin—both associated with intermediate resistance 
phenotypes—can inform timely updates to treatment protocols. This 
study also confirmed strong genotype–phenotype agreement for several 
resistance genes, such as cmy, ctx, and tem for ampicillin; tetA, tetB, and 
tetD for tetracycline and oxytetracycline; aac3 for gentamicin and 
neomycin; and sulII, sulIII, and dfrA for sulfamethoxazole-trimethoprim. 
These genes should be prioritized in resistance monitoring due to their 
predictive power for phenotypic resistance.

Antimicrobial treatment in farmed WTD should be tailored 
to resistance profiles to ensure therapeutic efficacy and manage 
potential co-infections. Drugs with low genotype–phenotype 

agreement—such as ceftiofur, florfenicol, and enrofloxacin—may 
be more suitable for targeted use, whereas antimicrobials with 
high resistance rates and strong genotype–phenotype agreement 
(e.g., tetracycline, oxytetracycline, and ampicillin) should 
be avoided. Tetracycline and oxytetracycline exhibited the highest 
rates of resistance (26.2 and 29.5%, respectively), making them 
unsuitable for prophylactic or routine treatment on Florida’s 
WTD farms.

Although the absence of ZOI breakpoints for penicillin in the 
CLSI manual limited definitive conclusions, reference to prior 
literature suggests that approximately 95% of isolates would 
be  classified as resistant—further supporting its exclusion from 
treatment protocols (Bughe et al., 2020). In summary, farmed WTD 
may serve as reservoirs for ARGs with the potential to impact both 
agricultural and ecological systems. By integrating ARG surveillance, 
antimicrobial susceptibility data, and tailored management strategies, 
stakeholders can more effectively control disease spread, limit 
resistance development, and safeguard both animal and 
environmental health.
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