
RESEARCH ARTICLE

Ecological niche modeling the potential

geographic distribution of four Culicoides

species of veterinary significance in Florida,

USA

Kristin E. SloyerID
1*, Nathan D. Burkett-Cadena1, Anni Yang2,3, Joseph L. Corn4, Stacey

L. VigilID
4, Bethany L. McGregor1, Samantha M. Wisely5, Jason K. Blackburn2,3

1 Florida Medical Entomology Laboratory, University of Florida, Vero Beach, Florida, United States of

America, 2 Spatial Epidemiology and Ecology Research Laboratory, Geography Department, University of

Florida, Gainesville, Florida, United States of America, 3 Emerging Pathogens Institute, University of Florida,

Gainesville, Florida, United States of America, 4 Southeastern Cooperative Wildlife Disease Study,

University of Georgia, Athens, Georgia, United States of America, 5 Department of Wildlife, Ecology and

Conservation, University of Florida, Gainesville, Florida, United States of America

* ksloyer@ufl.edu

Abstract

Epizootic hemorrhagic disease (EHD) is a viral arthropod-borne disease affecting wild and

domestic ruminants, caused by infection with epizootic hemorrhagic disease virus (EHDV).

EHDV is transmitted to vertebrate animal hosts by biting midges in the genus Culicoides

Latreille (Diptera: Ceratopogonidae). Culicoides sonorensis Wirth and Jones is the only con-

firmed vector of EHDV in the United States but is considered rare in Florida and not suffi-

ciently abundant to support EHDV transmission. This study used ecological niche modeling

to map the potential geographical distributions and associated ecological variable space of

four Culicoides species suspected of transmitting EHDV in Florida, including Culicoides

insignis Lutz, Culicoides stellifer (Coquillett), Culicoides debilipalpis Hoffman and Culicoides

venustus Lutz. Models were developed with the Genetic Algorithm for Rule Set Production

in DesktopGARP v1.1.3 using species occurrence data from field sampling along with envi-

ronmental variables from WorldClim and Trypanosomiasis and Land use in Africa. For three

Culicoides species (C. insignis, C. stellifer and C. debilipalpis) 96–98% of the presence

points were predicted across the Florida landscape (63.8% - 72.5%). For C. venustus, mod-

els predicted 98.00% of presence points across 27.4% of Florida. Geographic variations

were detected between species. Culicoides insignis was predicted to be restricted to penin-

sular Florida, and in contrast, C. venustus was predicted to be primarily in north Florida and

the panhandle region. Culicoides stellifer and C. debilipalpis were predicted nearly state-

wide. Environmental conditions also differed by species, with some species’ ranges pre-

dicted by more narrow ranges of variables than others. The Normalized Difference

Vegetation Index (NDVI) was a major predictor of C. venustus and C. insignis presence. For

C. stellifer, Land Surface Temperature, Middle Infrared were the most limiting predictors of

presence. The limiting variables for C. debilipalpis were NDVI Bi-Annual Amplitude and

NDVI Annual Amplitude at 22.5% and 28.1%, respectively. The model outputs, including
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maps and environmental variable range predictions generated from these experiments pro-

vide an important first pass at predicting species of veterinary importance in Florida.

Because EHDV cannot exist in the environment without the vector, model outputs can be

used to estimate the potential risk of disease for animal hosts across Florida. Results also

provide distribution and habitat information useful for integrated pest management

practices.

Introduction

Vector-borne pathogens can only exist in a permissive environment that supports appropriate

vectors (and hosts), such that the distribution of disease is linked to vector distribution. Species

distribution models (SDMs) can be used to map the potential distribution of disease vectors

allowing inference of disease risk [1–4]. In disease ecology, SDMs are useful to determine the

potential current and future geographic distribution of vector species as proxies for the patho-

gens they transmit [2,4–6]. Modeling probable occurrence is important because the act of in
situ surveillance requires extensive resources (e.g. personnel, sampling equipment, and labora-

tory resources) [7]. More simply, map predictions help researchers better understand where

vector-borne disease risk is most likely and to target surveillance to areas of highest risk.

Ecological niche models (ENMs) are SDMs commonly used to predict the geographic dis-

tribution of a species by determining the most likely environmental conditions associated with

collection locations of the target species [8]. The modeling process is rooted in ecological

niche theory, with a focus on the Hutchisonian n-dimensional hyper volume [9] of conditions

supporting a species on the landscape. A niche is a specific set of environmental conditions

which allows for the presence of a species. Simply put, niche theory states that no two species

can occupy the same ecological niche, in the case of this work, no two species will cohabitate

the same median ranges for all variables. Broadly, ENMs apply each unique set of ecological

parameters allowing for a species to maintain a population without immigration [9,10], with a

focus on abiotic and climatological conditions that support a species [11]. In general, ENMs

use either presence-only or presence and absence data of a target species and environmental

covariates to identify non-random patterns relating species occurrence to the landscape [12].

Commonly used models include machine learning techniques such as MAXENT [13], Boosted

Regression Trees [14], Random Forest [15], and the Genetic Algorithm for Rule-Set Produc-

tion (GARP) [1,12].

Epizootic hemorrhagic disease virus (EHDV) and bluetongue virus (BTV) (Reoviridae:

Orbivirus) are economically important pathogens transmitted by biting midges of the genus

Culicoides Latreille (Diptera: Ceratopogonidae), which can cause disease in a variety of rumi-

nant species worldwide. While many vector species have been identified, vectors have yet to be

determined in several regions. In Europe, Asia, and Africa, confirmed BTV vectors and sus-

pected EHDV vectors are Culicoides obsoletus (Meigen), Culicoides scoticus Downes & Kettle,

Culicoides pulicaris (Linnaeus), Culicoides imicola Kieffer, with Culicoides dewulfi Goetghe-

buer, and Culicoides chiopterus (Meigen) also known to transmit the viruses in Europe [16]. In

North America, the sole confirmed vector of EHDV is Culicoides sonorensis Wirth and Jones,

which along with Culicoides insignis Lutz is also a confirmed vector of BTV [17,18]. This poses

an issue for parts of the United States, such as Florida, where EHDV epizootics occur but C.

sonorensis is absent. Suspected vectors of EHDV in Florida include C. insignis, Culicoides stelli-
fer (Coquillett), Culicoides venustus Hoffman, and Culicoides debilipalpis Lutz [18–21].

Ecological niche modeling the potential geographic distribution of four Culicoides species.
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Several studies in Europe, Africa, and the Americas have investigated the environmental

factors associated with the geographic distributions of multiple Culicoides species. In Portugal,

generalized linear mixed models were used to demonstrate the most important environmental

factors predicting the distribution of European disease vectors [22]. Diurnal temperature

range, number of frost days, cold stress, dry stress, and median monthly temperature were the

most important factors driving the distribution of C. imicola [22,23], the primary BTV vector

in southern Europe. In contrast, the distributions of species within the Obsoletus group (C.

chiopterus, C. dewulfi, C. scoticus, C. obsoletus, and Culicoides montanus Shakirzjanova) were

predicted by diurnal temperature range, and median monthly temperature [22]. In North

America, Zuliani et al. [24] used a maximum entropy (MAXENT) approach to ENM and tem-

perature variables to predict future distributions of C. sonorensis in the western USA, due to

climate change, and found that northern latitudinal limits are most at risk of species range

expansion associated with increased temperatures. In Argentina, Aybar et al. [25] found that

minimum and maximum temperatures and accumulated rainfall were the best indicators of

presence of C. insignis and Culicoides paraensis Goeldi. Rainfall was also demonstrated as

important for the presence of C. insignis [26] in Brazil. These studies demonstrate that climate

has an effect on the distribution of Culicoides species. and that these data can be used to model

the predicted distribution of Culicoides species.

Here we modeled the potential distributions of four Culicoides species that are putative vec-

tors of orbiviruses in Florida, USA. The four species modeled were C. insignis, C. stellifer, C.

venustus, and C. debilipalpis. The primary objectives to modeling each species were to: 1) com-

pare the major environmental variables predicting the distributions of each species; and 2)

produce distribution maps of these species in Florida for use by researchers, vector control

agencies and land managers.

Methods

Species occurrence records

Field research in Florida state forests was conducted with permission from the Florida Depart-

ment of Agriculture and Consumer services. No field permit number was assigned.

Deer farm collections were made with permission from private property owners.

We built models using two different datasets, including data from the Southeastern Cooper-

ative Wildlife Disease Study (SCWDS), and the Cervidae Health Research Initiative (CHeRI).

Data from SCWDS were collected between November 2007 and September 2013 using CDC

miniature light traps with white incandescent lights until 2009 and then ultraviolet light emit-

ting diodes (UV/LEDs) from 2009 in order to increase the sampling effort as described in Vigil

et al. [27]. CHeRI personnel collected samples from 2015 and June 2017 at deer farms through-

out the state as well as state forests and wildlife management areas. 2,910 traps were set by

SCWDS over the course of seven years across 59 counties in Florida, and 702 traps were col-

lected by CHeRI in 33 counties from 2016–2017 (125 traps used for model validation) and was

used to build and validate the models (Fig 1). Not all of these traps were set in spatially unique

places therefore duplicate presence points were removed from shapefiles prior to running the

models in Desktop GARP. Some of these 2,910 traps contained no Culicoides species or did

not contain any of the species presented in this study. Therefore, only traps which represented

presence of one of the four modeled species were used in the model for a total of 312 traps for

C. insignis, 76 traps for C. stellifer, 18 traps for C. venustus, and 31 traps for C. debilipalpis. In

this study, presence was defined by the detection of one or more specimens of a species in a

trap. Only CHeRI data from 2017 were used to validate the models.

Ecological niche modeling the potential geographic distribution of four Culicoides species.
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We used collection data from the Florida Mosquito Control Association (FMCA), and State

Forests, between the months of April to October, during the 2017 field season to validate best

model subsets for C. insignis, C. stellifer, and C. debilipalpis. Participating Mosquito Control

Districts (MCDs) included: South Walton County MCD, North Walton Mosquito Control,

Jacksonville Mosquito Control (Duval County), Anastasia Mosquito Control (St. Johns

County), Pinellas County Mosquito Control, Manatee County MCD, Martin County Mos-

quito Control, Lee County MCD, and Collier MCD. All CDC miniature light traps were outfit-

ted with UV/LED light arrays and were occasionally supplemented with CO2 when available

to increase the number of Culicoides in the trap. In addition to trapping efforts from county

mosquito control districts, permits were obtained to trap on state forest land at the following

Florida state forests: John M. Bethea State Forest, Goethe State Forest, Belmore State Forest,

Tate’s Hell State Forest, Matanzas State Forest, Blackwater River State Forest, Point Washing-

ton State Forest, Lake Talquin State Forest, and Pine Log State Forest. Each state forest was vis-

ited between one to three nights throughout the field season, and up to six traps were placed

per trapping event.

Fig 1. All Culicoides species. trapping locations available for model creation including some county locations. Data were collected by SCWDS and CHeRI between

2008–2017. Map created using shapefile of North America from the United States Census Bureau [28].

https://doi.org/10.1371/journal.pone.0206648.g001
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Model covariates

A combination of environmental coverages was used including three bioclimatic variables

downloaded from WorldClim (Table 1) (termed “BioClim variables” hereafter), which were

derived from the interpolation of historical ground station measures of temperature and pre-

cipitation [29]. In addition, satellite-derived environmental variables from the Trypanosomia-

sis and Land Use in Africa (TALA) Research Group (Oxford, United Kingdom) were used

describing temperature variable, including middle-infrared (MIR) and land-surface tempera-

ture (LST), and vegetation, (NDVI) variables (Table 1) [30]. And finally, four soil variables

were included: pH, organic content, sand fraction, and calcareous vertisols. For this study, we

employed a combination of expert opinion and exploratory modeling to determine the final

single variable combination that would produce reasonable models for all four species. Our

goal was to model each species with the same set of covariates to evaluated potential differences

affecting spatial distributions. Pearson correlation tests were used to eliminate highly

Table 1. Environmental coverages used for GARP models.

Environmental Parameters Environmental Variable (unit) Name Source

NDVI Mean NDVI (no units) wd1014a0 TALA†

NDVI Amplitude (no units) wd1014a1 TALA

NDVI Bi-Annual Amplitude wd1014a2 TALA

Minimum NDVI wd1014mn TALA

Maximum NDVI wd1014mx TALA

NDVI Phase of Annual Cycle wd1014p1 TALA

NDVI Phase of Bi-Annual Cycle wd1014p2 TALA

Temperature Mean MIR (˚C) wd1003a0 TALA

MIR Annual Amplitude (˚C) wd1003a1 TALA

MIR Bi-Annual Amplitude wd1003a2 TALA

Minimum MIR (˚C) wd1003nm TALA

Maximum MIR (˚C) wd1003mx TALA

MIR Phase of Bi-Annual Cycle wd1003p2 TALA

Mean LST (˚C) wd1007a0 TALA

LST Annual Amplitude (˚C) wd1007a1 TALA

LST Bi-Annual amplitude (˚C) wd1007a2 TALA

Minimum LST (˚C) wd1007nm TALA

Maximum LST (˚C) wd1007mx TALA

LST Phase of Annual Cycle wd1007p1 TALA

LST Phase of Bi-Annual Cycle wd1007p2 TALA

Max Temperature of Coldest Month BIO6 WorldClim‡

Precipitation Precipitation of Wettest Month (mm) BIO13 WorldClim

Precipitation of Driest Month (mm) BIO14 WorldClim

Soil Soil pH pH SoilGrids v0.5.1¥

Organic Content of Soil (g/kg) OrganCont SoilGrids v0.5.1

Sand Fraction of Soil (%) SandFraction SoilGrids v0.5.1

Calcareous vertisols of Soil (%) CV SoilGrids v0.5.1

† Trypanosomiasis and Land Use in Africa (TALA) Research Group (Oxford, United Kingdom)

‡ (www.worldclim.org)

¥ (www.soilgrids.org)

Coverages were obtained from both the Trypanosomiasis and Land Use in Africa (TALA) Research Group, as well as BioClim precipitation and temperature variables

from WorldClim.

https://doi.org/10.1371/journal.pone.0206648.t001
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correlated variables across the nineteen BioClim variables. The final three BioClim variables

were chosen based on the limited amount of literature on the ENM modeling of Culicoides
species [23]. Because vector-borne pathogens cannot exist in the environment without a vector

or host, these models can be used to map the potential distribution of disease vectors allowing

us to infer disease risk. Other factors such as biotic environmental parameters, genetic diver-

sity, and dispersal may also affect species distributions, however these variables were not mod-

eled as a part of this study [31,32].

With every GARP model explained by a genetic algorithm ruleset, we extracted the rulesets

of environmental variables [33,34] from the best subsets model output for each species by

using GARPTools [35]. For every model, GARP generates 50 rules to predict presence or

absence of the species. These rules can be used to evaluate the biological information across

models [36,37,38]. The functions in GARPTools automate the extraction of logit and (negated)

range rules by (1) identifying and extracting dominant presence rules from the best subsets

produced in DesktopGARP, (2) determining the median minimum and maximum values for

all environmental variables used for the dominant presence rules in best subset models from

the output file in step 1, (3) rescaling all median minimum and maximum values for each vari-

able to 0.0–1.0 to allow for direct comparisons between variables and (4) plotting results in a

bar graph to allow for a visual comparison between environmental variables. This process

allows for a direct comparison of the differences between variable ranges predicting presence

across species.

Ecological niche modeling approach

Species-specific ENM experiments were run using presence data for the adult locations for

each C. insignis, C. stellifer, C. venustus, and C. debilipalpis. A strategy focusing on precipita-

tion, temperature, normalized difference vegetation index (NDVI), and soil variables was

selected, holding the selected environmental covariates constant for all four species. All experi-

ments were performed using DesktopGARP v1.1.3 (University of Kansas Center for Research,

Lawrence, KS) using the best subset procedure [37]. Presence data were filtered for spatially

unique occurrences at 1.0 km x 1.0 km, the native raster resolution of the environmental

covariates. Prior to introduction to GARP, unique points were randomly split into testing

(25%) and training (75%) datasets for external model accuracy assessment. Experiments used

an internal 75% training/25% testing split of occurrence, specifying 200 models at a maximum

of 1000 iterations with a convergence limit of 0.01. All four rule types (i.e. range, negated

range, logit, and atomic rules) were selected in all experiments. The ten best models in each

experiment were chosen using a 10% omission/50% commission threshold [37]. Best subsets

were summated into single raster ranging from 0 (absent) to 10 (highest model agreement of

presence) [33] illustrating the potential geographic distribution of each species for the entire

state. All data preparation for GARP experiments was performed using the GARPTools R-

package developed by Haase et al. [35] (IN REVIEW). Once experiments were completed,

GARPTools was used to post-process rasters (summation) and calculate accuracy metrics.

GARP models are best evaluated using a combination of area under the curve (AUC), omis-

sion (false negative rate), and commission (false positive rate; percent of pixels predicted pres-

ent) [38]. AUC is not an ideal metric [39], but is useful for identifying models that predict well.

Final maps were created in ArcGIS v 10.5 (ESRI, Redlands, CA).

Culicoides venustus was rarely collected with the trapping method of this study, therefore all

available data (CHeRI, SCWDS, MCD, and State Forests) from 2008 to 2017 were pooled from

all data sources to build models with adequate sample size. Predictions for C. venustus were

not validated with field data. Despite the inability to validate the models, building a model for
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C. venustus was still deemed crucial, as evidence points to this species as a potential vector of

EHD, based on vector competence studies [40], and its association with host animals during

times of outbreak [19]. The preceding work being some of the only published work on this spe-

cies, it is critical to provide any information we can to the literature.

Model validation

Field validation points were derived from Mini-CDC light traps (BioQuip Products, Inc.) with

black light UV/LED arrays (Model #: 2790V390). When available, carbon dioxide was deliv-

ered to the traps via an insulated thermos filled with approximately 3.5 liters of dry ice. The

trap netting at the bottom was modified for collecting insects directly into 90% EtOH in a

50mL conical bottom tube. The modification was made by inserting window screen onto the

end of the trapping bag normally used for trapping mosquitoes and directing small insects

through this screen and into the ethanol-filled tube. Culicoides species identifications were

based on external morphology of the female using Blanton and Wirth [41].

Results

Four final experiments were developed for C. insignis, C. stellifer, C. venustus, and C. debilipal-
pis (Fig 2). The results of the AUC scores for all models indicated models performed better

than random, and most of the models had a total omission of zero, meaning all independent

test points were predicted landscapes (Table 2). For the results of the original models made

with SCWDS and CHeRI data, the model predicted 94.0% of the presence points of C. insignis,
across 58.1% of the landscape (Fig 3 and Table 2). For C. stellifer, the models predicted 98.0%

of the presence points across 72.4% of the landscape of Florida, while for C. debilipalpis, the

models predicted 94.0% of the presence points correctly across 70.2% of the landscape. Culi-
coides venustus, which had the lowest dataset available to build models (n = 18), had a 96.0%

accuracy rate of predicted presence points across just 26.3% of Florida (Fig 3 and Table 2).

The C. insignis model predicted this species to be widely distributed across the peninsular

region of Florida (Fig 3A). The distribution of C. stellifer was predicted widely across much of

the state, persisting with high model agreement throughout the panhandle south toward Lake

Okeechobee in southern Florida (Fig 3B). Culicoides venustus had the most geographically

restricted prediction of the four species and was predicted to occur primarily in the panhandle

and northern Florida. Finally, similar to C. stellifer, C. debilipalpis was predicted across a large

portion of Florida (~70%). Model agreement was highest in peninsular and northern Florida

and model agreement decreased southward (Fig 3D). Disjunct suitable areas were predicted

for C. insignis into the panhandle region of north Florida (Fig 3A). Predictions for C. insignis
were also relatively low in the extreme southern part of the state including the Florida Keys,

where the landscape is more likely to be dominated by saltmarsh species [42] (Fig 3A). Culi-
coides stellifer was predicted to have low suitability south of Lake Okeechobee (Fig 3B),

whereas C. venustus was predicted to have no suitable habitat south of Polk County, outside of

isolated pixels (Fig 3C).

The experiment for C. insignis predicted the 63.8% of 2017 field validation data correctly,

while 90.0% of C. stellifer locations were predicted correctly and C. debilipalpis locations were

predicted with 79.4% accuracy (Table 2). Models were unable to be validated for C. venustus
due to the relative rarity of this species using our trapping methods and all available data from

data sources were used to build models; for C. venustus, we relied on the independent testing/

training split to assess accuracy (Table 2).

Broadly, covariates with narrow ranges can be interpreted as the most limiting in defining

species distributions. Across species, mean, minimum, and maximum LST, and mean,

Ecological niche modeling the potential geographic distribution of four Culicoides species.
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minimum, and maximum MIR had overlapping ranges. Maximum, minimum, bi-annual

amplitude and annual amplitude of NDVI were major predictors of C. venustus presence, and

to a lesser extent, C. insignis. Spatial distributions for C. insignis were primarily influenced by

temperature, as demonstrated by the limiting ranges of maximum, minimum and mean LST,

as well as maximum, minimum and mean MIR (Fig 4). To a lesser extent, minimum and maxi-

mum NDVI predicted presence of C. insignis, influencing distributions more than C. stellifer
and C. debilipalpis, but less than C. venustus. All four soil variables used were predicted to

moderately influence the distributions of C. venustus, as the rescaled ranges fell between the

values of 17.1% and 36.0% of their full ranges (Fig 4). Soil variables did not contribute as much

to the other three species investigated in this study, with the exception of calcareous vertisols,

Fig 2. Geographic distribution of the training and testing presence points of four Culicoides species of Florida. These species have veterinary importance in

Florida and presence points were used in the ecological niche model building and evaluation in desktop GARP. Recorded species distributions in Florida, USA are

shown for (A) C. insignis, (B) C. stellifer, (C) C. venustus, and (D) C. debilipalpis. Map created using shapefile of North America from the United States Census

Bureau [28].

https://doi.org/10.1371/journal.pone.0206648.g002
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which spanned 17.9% and 22.9% of the rescaled ranges for C. debilipalpis and C. insignis
respectively (Fig 4).

The median ranges of environmental covariates in the distribution of C. stellifer were simi-

lar to those of C. insignis. For example, minimum, maximum, and mean LST, and maximum,

minimum and mean MIR were most limiting for C. stellifer (Fig 4). However, unlike C.

insignis, minimum NDVI was not a limiting covariate for C. stellifer, nor were calcareous verti-

sols. Culicoides venustus had the most limiting covariate ranges of the species modeled in this

study. In general, precipitation variables were not found to be important in predicting distri-

butions for any of the four Culicoides species modeled in this study.

The majority of the environmental covariates used in the model were not sufficient for pre-

dicting presence of C. debilipalpis as 13 of the 27 selected parameters predicted species pres-

ence across more than 90% of their median ranges. The three environmental parameters with

the lowest percent median range predicting presence were calcareous vertisols of the soil,

NDVI Bi-Annual Amplitude and NDVI Annual Amplitude at 17.9%, 22.4% and 28.2%,

respectively.

Discussion

This study employed ecological niche modeling to estimate the variable space and geographic

distribution of four important Culicoides species with veterinary significance in Florida.

Though there are several informative studies from Europe, South Africa, and South America

using ENMs for Culicoides vectors [23,24,43,44], there is a paucity of this type of work in the

Americas.

The distribution for C. stellifer was widely predicted across the state with presence

unlikely south of Lake Okeechobee. This prediction agrees with historical maps [41] as well

as the 2017 field validation data, though efforts to collect in 2017 were limited south of Lake

Okeechobee. The low model agreement of C. stellifer throughout Okaloosa County (Fig 1)

as predicted here (Fig 3B) was also noted in Blanton and Wirth [41] and confirmed with the

2017 field validation data. MIR and LST (both temperature variables) were found to be the

most limiting factors for C. stellifer, with NDVI being moderately limiting. Soil variables

were not particularly limiting for C. stellifer. Of the four variables used, sand fraction had

the narrowest median range, but it was still predicted to occur across 62.2% of sand to soil

Table 2. Accuracy metrics and sample sizes for GARP model building and evaluation for C. insignis, C. stellifer, C. venustus, and C. debilipalpis.

C. insignis C. stellifer C. venustus� C. debilipalpis
Metric Model building Validation Model building Validation Model building Validation Model building Validation

N to build models 312 - 76 - 18 - 31 -

N to test models 104 31 24 23 5 - 10 17

Total Omission 0.01 0.19 0.00 0.00 0.00 - 0.00 0.00

Average Omission 5.92 36.17 2.00 10.00 4.00 - 6.00 20.59

Total Commission 36.04 - 55.43 - 15.54 - 35.95 -

Average Commission 58.14 - 72.41 - 26.33 - 70.23 -

Standard Error 0.026 0.049 0.059 0.063 0.093 - 0.093 0.070

Z-score 13.279 4.868 8.473 6.970 3.385 - 4.206 4.328

AUC 0.764 0.490 0.681 0.605 0.898 - 0.709 0.555

�no validation data for venustus

Also included are the accuracy metrics and sample sizes for the data used for model validations for the GARP models for C. insignis, C. stellifer, and C. debilipalpis.
Model for C. venustus was not able to be validated.

https://doi.org/10.1371/journal.pone.0206648.t002
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ratios, with a propensity towards high sand to soil ratios. This is counter to findings by

Meiswinkel during an outbreak of African horse sickness in 1996, which found that the

Orbivirus vector C. imicola, was found in lowest numbers in sandy, quick-draining soils

[45]. Though this may be attributed to any other number of environmental factors present

in the area, including, but not limited to, wind velocity [44].

Culicoides stellifer is a widespread, temperate species of Culicoides, with its distributions

encompassing all of the continental United states and well into Canada [41]. According to the

models their presence should be expected to be considerably less likely south of Lake Okeecho-

bee, which marks the Everglades/Lake Okeechobee basin [46] (Fig 3B). This region is the start

of a tropical rainy climate, signifying the beginning of a dramatic increase in temperature and

precipitation [47], for which C. stellifer is probably not as well adapted. Extreme high

Fig 3. Predicted distributions of four Culicoides species in Florida, USA. The original model was built for (A) C. insignis, (B) C. stellifer, (C) C. venustus, and (D) C.

debilipalpis. The color ramp represents the Model Agreement for each species, with zero indicating none of the models predict presence, and ten to indicate all models

predict presence. Map created using shapefile of North America from the United States Census Bureau [28].

https://doi.org/10.1371/journal.pone.0206648.g003
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temperatures and precipitation experienced in the tropical rainy climate of south Florida, in

addition to providing a possible upper-limit for heat tolerance of this species, may not provide

necessary plant species to contribute to required soil chemistry of C. stellifer oviposition sites.

Recent studies have shown that C. stellifer prefers larval habitats with mud and vegetation

from northern Florida over manure or control substrates for oviposition [48]. This should be

taken into account when considering the higher probability of the predicted distributions of C.

stellifer in northern through central Florida, where temperate plant species are abundant [49].

The models for C. debilipalpis also predicted the species across much of Florida. However,

this prediction is somewhat counter-intuitive to the data collected during the present study; it

was not very common using our sampling method. This result may be attributed to the inabil-

ity of CDC light traps to attract all species of Culicoides equally [50,51]. It is possible that C.

debilipalpis is present in the areas not predicted by the model.

The large areas absent of C. debilipalpis could also be explained by habitat preference. Culi-
coides debilipalpis has been confirmed to develop in tree holes of a variety of species, including

Salix species in Argentina [52], bamboo stumps and rotting cocoa pods in Trinidad [53,54],

Quercus species. in Virginia and Florida, USA [55,56], and Magnolia species in Florida, USA

[56]. Although the specific larval habitat of C. debilipalpis have not yet been elucidated in Flor-

ida, they are probably also located in tree holes of several different hardwood species. For this

reason, the C. debilipalpis map outputs, driven by NDVI, may show areas where fewer hard-

wood species are available for larval C. debilipalpis development in the green and grey portions

of the map (Fig 3D). South of lake Okeechobee, the landscape is dominated by extensive

marsh with scattered pine rock land forests and tropical hardwood hammocks [49], habitats

that are not known for tree holes. Additionally, calcareous vertisols occur across a narrower

median range than other soil variables used, for this reason it may also be affecting the distri-

bution of C. debilipalpis possibly through the dependency of NDVI on soil parameters [44].

Since the calcareous vertisols may have some effect on the ability of the soils to retain phospho-

rus [57], an element necessary for the development of ATP through photosynthesis, it could

directly affect NDVI.

The predicted distribution of C. venustus was consistent with that published by Blanton and

Wirth [41]. In North America, distributions for C. venustus extend north to Canada and as far

west as Oklahoma [41,58], with breeding sites recorded from livestock footprints in wet pas-

tures, and stream edges bordered by grasses, sand, or sphagnum moss [41]. In this study, C.

venustus was not recorded further south than Pasco County, and the models predict low prob-

ability of C. venustus south of Pasco County (Fig 3). NDVI variables, in particular, bi-annual

cycle, bi-annual amplitude, amplitude, minimum, maximum and mean of the NDVI, were

most limiting for C. venustus out of all four species of Culicoides modeled in this study. In

addition, temperatures, particularly the LST, were limiting for the distributions of C. venustus.
Finally, the rescaled ranges for soil variables fell between the values of 17.1% and 36.0% of their

full ranges. This can be interpreted to mean that all four soil variables used were predicted to

moderately influence the distributions of C. venustus.
Culicoides venustus is predominantly a northern species [41], making its cold-tolerance

higher than other more tropical species, such as C. insignis. Similarly, EHDV is most common

in deer and Culicoides species in northern Florida and the panhandle in the same region of

Florida where C. venustus is most common. This significant overlap between a putative vector

species and disease warrants further investigation of this species as a vector of EHDV.

Fig 4. Scales median ranges of the environmental variables for four Culicoides species. Ranges are from 0.0 to 1.0 of

the environmental variables which predict C. debilipalpis, C. insignis, C. stellifer and C. venustus presence.

https://doi.org/10.1371/journal.pone.0206648.g004
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In contrast to both the historical data from Blanton and Wirth [41] restricting C. insignis
East of Gilchrist Counties, as well as the original models, model validation suggest that C.

insignis, is likely to occur outside of predicted ranges and into peninsular Florida. Culicoides
insignis was discovered in the continental United States and Florida in 1948 [59], and was

assumed to be restricted to the state until at least 1979 [41]. Hagan and Wirth [60] documented

C. insignis in Glynn and Chatham Counties, Georgia. We collected C. insignis extensively in

the panhandle in 2017 and it has been collected in light traps in both Mississippi and Alabama

as recently as 2014 [27]. Recent studies [61] have also documented the range of C. insignis
extending into Mississippi and Louisiana.

The GARP experiments using SCWDS and CHeRI data predicted C. insignis distributions

to extend as far west as Jackson County in Florida. CHeRI sampling covered a similar span of

longitudes as the SCWDS sampling efforts from 2007–2013, suggesting that C. insignis may

have been absent from much of the panhandle during the time period the SCWDS data were

collected. The low AUC (<0.50) for the validation model from the 2017 validation data sug-

gests that models for C. insignis predicted the panhandle poorly.

One possible explanation for poor model prediction in the panhandle may be attributed to

an increase in sampling efforts in 2017. State forests in the panhandle were visited several

times during the season and we also consistently sampled in North and South Walton Coun-

ties. Poor model agreement could also be an indication that C. insignis is recently expanding to

habitats north of its historic distribution, as Vigil et al., [61] has noted. In other studies, vector

Culicoides species have been documented to have northward movements across continents,

including the apparent expansion of C. imicola into Europe [43,62,63]. A similar pattern was

also observed in C. sonorensis [24]. In that study, they used a MAXENT approach to predict

the future distributions of C. sonorensis in North America. The models predicted that the

northern latitudinal limits of the distribution of C. sonorensis was at high risk for expansion

due to climate change. Similarly, climate change may contribute to the northwest expansion of

C. insignis, in part, due to findings of the model that C. insignis were primarily influenced by

high temperature (LST and MIR) variables, which included minimum and maximum annual

temperatures which were also found to be significant to their distributions in South America

[25]. Potential northward expansion of C. insignis will likely affect the distributions of endemic

BTV infection in cattle and white-tailed deer as it will begin to overlap more with the distribu-

tions of another major vector of BTV in North America, C. sonorensis [18]. Further, spread of

a subtropical vector of BTV could increase the chance of introducing exotic BTV serotypes

from South America, as serotypes 1, 3, 6, 8, 12, and 14 have historically been restricted to

South America in the New World [64]. This scenario is demonstrated to be plausible by the

first report of bluetongue virus serotype 1 in Louisiana in 2006 [65].

A narrow median range suggests that the ecological niche of the species is constrained to

the specific conditions of this covariate, which indicates the environmental variable plays a

more important role in the distribution of a species [33,34]. Two different measures of average

temperature, MIR and LST, were most limiting in predicting C. insignis. Additionally, a vari-

able with narrow median range for C. insignis was the maximum temperature of the coldest

month (Fig 4). Culicoides insignis is a tropical species primarily distributed throughout South

America where it is the primary vector for BTV [64]. Its range extends to southern Florida,

due to the subtropical nature of the climate, where it has been implicated in BTV transmission

[21]. As C. insignis is primarily a peninsular species, the demonstration of these variables to

apparently drive the niche for C. insignis suggests that its proclivity to peninsular Florida is

driven by temperature. In previous studies, C. insignis distribution was influenced by mean

minimum humidity [66], which also associates the species with peninsular Florida. Although

humidity was not a parameter used in the present study, temperature associations with other
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Culicoides species have been demonstrated previously, such as a narrow temperature range of

C. imicola in Europe [67].

Kline and Greiner [68] observed that larval C. insignis is found in close association with cat-

tle. This not only provides evidence that C. insignis is associated with hosts, it also demon-

strates that certain mud characteristics may be more suitable for larval development. This

association would indicate that soil pH in particular should be useful in creating accurate mod-

els for C. insignis. However, results of our models, indicate that C. insignis is relatedly robust in

its tolerance to pH, spanning 69.1% of the rescaled range. This would indicate that while pH

may be a moderately limiting variable in the distribution of C. insignis, it is not as useful as

other variables such as temperature (LST and MIR), NDVI, or calcareous vertisols.

Overall, NDVI Bi-Annual Amplitude, NDVI Amplitude, MIR Bi-Annual Amplitude, MIR

Annual Amplitude, as well as LST Phase of Annual Cycle and LST Bi-Annual Amplitude were

limiting variables across all four Culicoides species analyzed in this study (Fig 4). None of the

chosen environmental parameters appear to meaningfully predict C. debilipalpis along a nar-

row median range. For C. debilipalpis, the environmental covariates with the narrowest

median ranges predicting presence were NDVI Bi-Annual Amplitude and NDVI Annual

Amplitude. The other covariates were less useful to predict C. debilipalpis and future work

should focus on modeling each species with the most appropriate covariates rather than a uni-

form set for all four species.

Environmental variable ranges in general were much narrower for C. insignis, C. stellifer,
and C. venustus, suggesting a higher confidence that variables used in this study are driving

distributions of some species. NDVI was a limiting factor for all four species of Culicoides. As

these Culicoides species breed in semi-aquatic soils, the chemical composition of which is

influenced by surrounding plant species [69], which can potentially change the measurement

of the NDVI [70]; the NDVI median range is potentially specific to each species of Culicoides
[44,52].

In conclusion, all four Culicoides species demonstrated unique distributions using the cho-

sen environmental variables in GARP experiments. Culicoides insignis was predicted widely in

the peninsular region, C. stellifer was predicted north of Lake Okeechobee, C. venustus was

predicted in the panhandle and north, and C. debilipalpis was predicted across the largest

range of Florida, although with large gaps in predicted presence in between. Minimum, and

maximum MIR and minimum, maximum, and mean LST were the most limiting variables for

C. insignis, C. stellifer, and C. venustus, indicating that upper and lower temperature limits are

most important in the distributions of these Culicoides species. In contrast, these were some of

the least limiting environmental variables used for C. venustus, for which the bi-annual and

annual amplitudes of LST, MIR, and NDVI were more limiting. Most NDVI variables were

also very limiting for the distributions of C. venustus and were moderately limiting for C. debil-
ipalpis. In general, however, the chosen environmental variable set was not suitable for predict-

ing the presence of C. debilipalpis. These ranges suggest that temperature (LST and MIR) is the

most limiting factor in the distributions of these Culicoides species, followed by NDVI, and

finally soil variables, which were moderately useful in generating spatial predictions of Culi-
coides species. In general, precipitation variables were not found to be important in predicting

distributions of these four Culicoides species in Florida.

This study employed ecological niche modeling to estimate the variable space and geo-

graphic distribution of four important Culicoides species with veterinary significance in Flor-

ida, marking the first of its type in Florida and is among very few distribution modeling

studies for Culicoides species in North America. It should be noted that our focus for the

model-building was primarily on exploring the differences in environmental conditions and

holding these variables constant between four different species in the genus Culicoides. This
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approach allowed for the direct comparison between the median ranges of environmental vari-

able. As a result, these maps may not be the most geographically accurate maps for each spe-

cies. Future work should focus on modeling each species with the most appropriate covariates

rather than a uniform set, modeling the ideal covariates for each species in order to create

more accurate distribution maps. Accurate maps will further our understanding of EHDV and

BTV transmission and may be used by wildlife managers (spanning public and private lands),

and livestock producers to identify areas most at risk for EHDV and BTV disease transmission.

Further, identification of environmental covariates contributing to their distributions will

allow for the development of an integrated pest management program to control vector

species.
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